University of Groningen

Formal Synthesis of the Anti-Angiogenic Polyketide (-)-Borrelidin under Asymmetric Catalytic Control

Madduri, Ashoka V. R.; Minnaard, Adriaan

Published in:
Chemistry

DOI:
10.1002/chem. 201001284

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Madduri, A. V. R., \& Minnaard, A. J. (2010). Formal Synthesis of the Anti-Angiogenic Polyketide (-)Borrelidin under Asymmetric Catalytic Control. Chemistry, 16(38), 11726-11731. DOI: 10.1002/chem. 201001284

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. number of authors shown on this cover page is limited to 10 maximum.

CHEMSTRY
 A EUROPEAN JOURNAL

Supporting Information

© Copyright Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, 2010

Formal Synthesis of the Anti-Angiogenic Polyketide (-)-Borrelidin under Asymmetric Catalytic Control

Ashoka V. R. Madduri and Adriaan J. Minnaard* ${ }^{[a]}$

chem_201001284_sm_miscellaneous_information.pdf

Table of Contents

Page

1. Experimental procedures/data 2-23
2. NMR Spectra 24-52

Experimental Details: Synthesis of the upper part of Borrelidin.

(E)-4-(tert-Butyl-diphenyl-silanyloxy)-but-2-enethioic acid S-ethyl ester (3)

To 20 mL of glycol (358 mmol) in 180 mL of dry THF was added 2.2 g (32.2 mmol) imidazole. Then 9.3 g (33.8 mmol) tert-butyldiphenylsilyl chloride was added to the mixture under nitrogen atmosphere. The resulting mixture was stirred for 24 h at rt , quenched with water and extracted with diethyl ether. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and purified by flash chromatography (eluent pentane/EtOAc $4: 1$) to afford $8.5 \mathrm{~g}(83 \%$ yield) of monoprotected glycol a as a colorless oil. A solution of $\mathbf{a}(8.5 \mathrm{~g}, 28.3 \mathrm{mmol})$ and 1.3 equiv of iodoxybenzoic acid (IBX) ($10.3 \mathrm{~g}, 36.3 \mathrm{mmol}$) in 180 mL of EtOAc was refluxed for 24 h and cooled to rt. IBX and benzoic acid were filtered off through Celite and washed with EtOAc. The filtrate was concentrated under reduced pressure to give aldehyde \mathbf{b} ($8.3 \mathrm{~g}, 98 \%$ yield) which was used in the next step without purification. A solution of $\mathbf{b}(8.3 \mathrm{~g}, 27.8 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{PCHCOSEt}^{2}$ $(12.2 \mathrm{~g}, 33.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ was refluxed for 24 h . The solution was concentrated under reduced pressure and purified by flash chromatography (eluent pentane/ether 40:1) to afford α, β unsaturated thioester 2 as a colourless oil ($8.5 \mathrm{~g}, 80 \%$ yield).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 7.66(\mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 6 \mathrm{H}), 6.89(\mathrm{dt}, J=$ $15.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dt}, J=14.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.32(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.07$ (s), 142.70 (d), 135.40 (d), 132.86 (s), 129.86 (d), 127.80 (d), 126.73 (d), 62.77 (t$), 26.74$ (q), 23.35 (t$), 19.45$ (s$), 14.80$ (q).

HRMS, calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{SSi}$ (M-tert-butyl) 327.0875 found 327.0875 .

(-)-(S)-4-(tert-Butyl-diphenyl-silanyloxy)-3-methyl-thiobutyric acid S-ethyl ester (3)

($\mathrm{R}, \mathrm{S}_{\mathrm{Fe}}$)-Josiphos $4 \cdot \mathrm{CuBr}$ complex ($67.7 \mathrm{mg}, 0.091 \mathrm{mmol}, 1 \mathrm{~mol} \%$) was dissolved in t-BuOMe (50 mL) under nitrogen. The solution was cooled to $-78^{\circ} \mathrm{C}$ and methylmagnesium bromide (3.64 mL , 10.93 mmol , solution in diethyl ether) was added dropwise over 10 min . After stirring for 10 min , a solution of thioester $2(3.5 \mathrm{~g}, 9.11 \mathrm{mmol})$ in t -BuOMe $(15 \mathrm{~mL})$ was added via syringe pump over 1 h . The reaction mixture was stirred at $-75^{\circ} \mathrm{C}$ for 17 h , then quenched by the addition of MeOH and allowed to warm to room temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and after phase separation and extraction of the aqueous phase with diethyl ether, the combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and purified by flash chromatography (eluent pentane/ether 40:1) to afford $\mathbf{3}$ as a colourless oil ($3.50 \mathrm{~g}, 96 \%$ yield, 98% ee)

1,4- addition on 15 g scale:

For the experimental procedure see the paper.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-8.5\left(\mathrm{c}=1.7, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66(\mathrm{dd}, J=6.8,1.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 6 \mathrm{H}), 3.54(\mathrm{dd}, J=10.0$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=9.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{dd}, J=14.5,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.38 (dd, $J=14.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}), 0.97$ (d, $J=6.6$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): 199.2 (s), 135.62 (d), 133.63 (s), 129.58 (d), 127.50 (d), 67.90 (t), 47.75 (t), 33.76 (d), 26.84 (q), 23.27 (t), 19.28 (s$), 16.40$ (q$), 14.86$ (q).

HRMS, calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{SSi}$ (M-tert-butyl) 343.1188 found 343.1183 .

E.e. and absolute configuration of $\mathbf{3}$ were determined by removal of the tert-butyldiphenylsilyl group. To $20 \mathrm{mg}(0.05 \mathrm{mmol})$ of $\mathbf{3} 0.5 \mathrm{~mL}$ of THF was added under nitrogen and to the mixture $(0.1 \mathrm{mmol}$, 2 eq) of TBAF were added and stirred for 3-4 h . The reaction mixture was filtered over a silica plug (eluent pentane/ether $2: 1$) to afford 3a. The enantiomeric excess was determined by GC analysis [Chiraldex AT-A (30.0 mx 0.25 mm), $1.0 \mathrm{~mL} / \mathrm{min}$, initial temp. $50^{\circ} \mathrm{C}$ then $5^{\circ} \mathrm{C} / \mathrm{min}$ to final temp. $170{ }^{\circ} \mathrm{C}, 19.5 \mathrm{~min}$ (major), 19.7 (minor), shows $\left.98 \% \mathrm{ee}\right] .{ }^{1}$

An alternative method for e.e determination: To 3 ($103 \mathrm{mg}, 0.25 \mathrm{mmol}$) in 4 mL THF, $\mathrm{LiAlH}_{4}(1 \mathrm{M}$ in THF, $3 \mathrm{eq}, 0.77 \mathrm{~mL}$) was added at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture stirred for at rt and quenched with water and aq. NaOH solution. Upon filtration through the Buchner funnel and the solid waste was washed twice with EtOAc. The filtrate were dried over MgSO_{4}, concentrated under reduced pressure, to afford a crude 3b. To 3b in 2 mL pyridine, benzoyl chloride ($3.5 \mathrm{eq}, 126 \mathrm{mg}$) was added and the reaction mixture was heated to reflux for 4 h . It was then allowed to cool down to rt continued to stir for 2 h . To this, 5 mL of toluene was added, concentrated under reduced pressure and purified by flash chromatography (eluents: pentane/ether 50:3) to afford $\mathbf{3 c}$ as a colorless oil. Determination of enantiomeric excess was achieved by HPLC (Chiralcel OB, 250*4.6, $10 \mu \mathrm{~m}$), Eluent 95/5 heptane/IPA, 23.38 min (major), 28.78 min (minor) 98% ee.

[^0]HPLC Shimadzu-System.
Column: Chiralcel OB, 250*4.6, 10 um. Eluent: 95/5 Heptane/IPA.

1: 215
$\mathrm{nm}, 2 \mathrm{~nm}$
Results

Pk \# Name	Retention Time	Area Area Percent		
1	1	23,868	37236209	49,793
2	28,692	37545575	50,207	

| Totals | | 74781784 | 100,000 |
| ---: | ---: | ---: | ---: | ---: |

HPLC Shimadzu-System.
Column: Chiralcel OB, 250*4.6, 10 um. Eluent: 95/5 Heptane/IPA.

Chromatogram

1: 215
$\mathrm{nm}, 2 \mathrm{~nm}$
Results

Pk \# Name	Retention Time	Area Area Percent		
1	1	23,380	135230055	99,152
2	2	28,788	1156875	0,848

Totals \quad T $\quad 136386930$	100,000

(-)-(E)-(S)-6-(tert-Butyl-diphenyl-silanyloxy)-5-methyl-hex-2-enethioic acid S-ethyl ester (6)

To a stirred mixture of $\mathbf{3}(2.78 \mathrm{~g}, 6.95 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added DIBALH (9.03 mL , $9.03 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) at $-65^{\circ} \mathrm{C}$ under nitrogen. Stirring was continued until the reduction was completed (3-4 h). The reaction mixture was quenched in 100 mL saturated aqueous Rochelle salt (potassium sodium tartrate) and stirred for 30 min . The phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure to yield crude aldehyde which was purified by flash chromatography (eluent pentane/ether 40:1) to give 5 in turn was used in the next step without complete removal of the eluent.

A solution of $(\mathrm{EtO})_{2} \mathrm{POCH}_{2} \mathrm{COSEt}(2.5 \mathrm{~g}, 10.42 \mathrm{mmol}, 1.5 \mathrm{eq})$ dissolved in THF (40 mL) under nitrogen and cooled to $0{ }^{\circ} \mathrm{C}$, ($5.21 \mathrm{~mL}, 8.34 \mathrm{mmol}, 1.2 \mathrm{eq}$) n-butyllithium (1.6 M in hexane) was added slowly at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 min at rt . Then the aldehyde $\mathbf{5}$ was dissolved in 5 mL THF was slowly added and the reaction mixture stirred at rt for 10 h . the reaction mixture was washed with distilled water and extracted with diethyl ether. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure to yield crude olefin. Purification by flash chromatography (eluent pentane/ether 40:1) afforded α, β-unsaturated thioester 6 as a colourless oil ($2.4 \mathrm{~g}, 81 \%$ yield over 2 steps)
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-6.25\left(\mathrm{c}=1.81, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.49-7.35(\mathrm{~m}, 6 \mathrm{H}), 6.87(\mathrm{dt}, J=15.4,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.11(\mathrm{dt}, J=15.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=10.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=10.0,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.95(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 190.1 (s), 143.89 (d), 135.60 (d), 133.70 (s), 129.95 (d), 129.61 (d), 127.64 (d), 68.07 (t), 35.97 (t), 35.42 (d), 26.86 (q), 23.03 (t$), 19.29$ (s$), 16.46$ (q), 14.91 (q).

HRMS, calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{SSi}$ (M-tert-butyl) 369.1331 found 369.1345 .

(-)-(3R,5S)-6-(tert-Butyl-diphenyl-silanyloxy)-3,5-dimethyl-hexanethioic acid S-ethyl ester (7a)
($\mathrm{R}, \mathrm{S}_{\mathrm{Fe}}$)-Josiphos $4 \cdot \mathrm{CuBr}$ complex ($70 \mathrm{mg}, 0.095 \mathrm{mmol}, 1 \mathrm{~mol} \%$) was dissolved in t - $\mathrm{BuOMe}(45 \mathrm{~mL}$) under nitrogen. The mixture was cooled to $-75^{\circ} \mathrm{C}$ and methylmagnesium bromide 3.81 mL (11.4 mmol, solution in diethyl ether) was added dropwise over 10 min . After stirring for 10 min , a solution of thioester $6(4.05 \mathrm{~g}, 9.51 \mathrm{mmol})$ in t -BuOMe (18 mL) was added via syringe pump over 1 h . The reaction mixture was stirred at $-75^{\circ} \mathrm{C}$ for 17 h , then quenched by the addition of MeOH and allowed to warm to room temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and after phase separation and extraction of the aqueous phase with 3 portions of diethyl ether, the combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and purified by flash chromatography (eluent pentane/ether $40: 1$) to afford $\mathbf{7 b}$ as a colourless oil ($3.75 \mathrm{~g}, 90 \%$ yield)
syn/anti ratio by NMR $=98: 2$
$[\alpha]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-4.86\left(\mathrm{c}=1.53, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.68$ (dd, $\left.J=7.6,1.5 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.41(\mathrm{~m}, 6 \mathrm{H}), 3.50(\mathrm{dd}, J=9.9,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=9.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{dd}, J=14.4,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.25(\mathrm{dd}, J=14.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.06(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): 199.3 (s), 135.7 (d), 133.94 (s), 129.50 (d), 127.57 (d), 68.74 (t), 51.19 (t), 40.79 (t), 33.16 (d), 28.69 (d), 26.88 (q), 23.26 (t), $20.28(\mathrm{q}), 19.29$ (s), 17.54 (q), 14.82 (q).

HRMS, calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{SSi}$ (M-tert-butyl) 385.1658 found 385.1668 .

(-)-(3S,5S)-6-(tert-Butyl-diphenyl-silanyloxy)-3,5-dimethyl-hexanethioic acid S-ethyl ester (7b)
$\left(\mathrm{S}, \mathrm{R}_{\mathrm{Fe}}\right)$-Josiphos $4 \cdot \mathrm{CuBr}$ complex ($23.5 \mathrm{mg}, 0.0317 \mathrm{mmol}, 1 \mathrm{~mol} \%$) was dissolved in t - BuOMe (15 mL) under nitrogen. The mixture was cooled to $-75^{\circ} \mathrm{C}$ and methylmagnesium bromide (1.27 mL 3.81 mmol , solution in diethyl ether) was added dropwise over 10 min . After stirring for 10 min , a solution of thioester $6(1.35 \mathrm{~g}, 3.17 \mathrm{mmol})$ in t -BuOMe $(6 \mathrm{~mL})$ was added via syringe pump over 1 h . The reaction mixture was stirred at $-75^{\circ} \mathrm{C}$ for 17 h , then quenched by the addition of MeOH and allowed to warm to room temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and after phase separation and extraction of the aqueous phase with 3 portions of diethyl ether, the combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and purified by flash chromatography (eluent pentane/ether $40: 1$) to afford $\mathbf{7 b}$ as a colourless oil ($1.25 \mathrm{~g}, 89 \%$ yield)
anti/syn ratio by NMR $=95 / 5$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-12.6\left(\mathrm{c}=0.47, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.66(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.41(\mathrm{~m}, 6 \mathrm{H}), 3.46(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{q}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{dd}, J=14.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=14.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~m}$, $1 \mathrm{H}), 1.28(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): 199.09 (s), 135.61 (d), 134.00 (s), 129.49 (d), 127.56 (d), 69.29 (t), $52.14(\mathrm{t}), 40.13(\mathrm{t}), 33.11$ (d), 28.4 (d), $26.88(\mathrm{q}), 23.25(\mathrm{t}), 19.30(\mathrm{~s}), 19.17(\mathrm{q}), 16.36(\mathrm{q}), 14.73(\mathrm{q})$.

HRMS, calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{SSi}$ (M-tert-butyl) 385.1658 found 385.1668 .

(-)-(E)-(5R,7S)-8-(tert-Butyl-diphenyl-silanyloxy)-5,7-dimethyl-oct-2-enethioicacid S-ethyl ester (9)

To a stirred mixture of $7 \mathrm{a}(1.23 \mathrm{~g}, 2.79 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added DIBALH (3.62 mL , $3.62 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) at $-65^{\circ} \mathrm{C}$ under nitrogen. Stirring was continued until the reduction was completed ($3-4 \mathrm{~h}$). The reaction mixture was quenched in 45 mL saturated aqueous Rochelle sat (potassium sodium tartrate) and stirred for 30 min . The phases were separated and the aqueous layer was extracted $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure to yield crude aldehyde and purified by flash chromatography (eluent pentane/ether 40:1) to give $\mathbf{8}$ which was used in the next step without complete removal of the eluent.

A solution of $(\mathrm{EtO})_{2} \mathrm{POCH}_{2} \mathrm{COSEt}(1.01 \mathrm{~g}, 4.186 \mathrm{mmol}, 1.5 \mathrm{eq})$ dissolved in THF (20 mL) under nitrogen and cooled to $0{ }^{\circ} \mathrm{C}$, ($2.09 \mathrm{~mL}, 3.34 \mathrm{mmol}, 1.2 \mathrm{eq}$) n -butyllithium (1.6 M in hexane) was added slowly at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 min at rt . Then the aldehyde $\mathbf{8}$ was dissolved in 2 mL THF was slowly added and the reaction mixture stirred at rt for 10 h . the reaction mixture was washed with distilled water and extracted with diethyl ether. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure to yield crude olefin. Purification by flash chromatography (eluent pentane/ether 40:1) afforded α, β-unsaturated thioester 9 as a colourless oil ($1.1 \mathrm{~g}, 84 \%$ yield over 2 steps)
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-7.6\left(c=1.97, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.41(\mathrm{~m}, 6 \mathrm{H}), 6.83(\mathrm{dt}, J=15.4,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.08(\mathrm{dt}, J=15.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=9.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=9.8,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.94(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.02(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 189.97 (s), 144.07 (d), 135.59 (d), 133.93 (s), 129.84 (d), 129.51 (d), 127.57 (d), 68.61 (t), 40.76 (t), 39.45 (t), 33.08 (d), 29.96 (d), 26.86 (q), 23.01 (t), 20.12 (q), 19.28 (s), 17.59 (q), 14.81 (q).

HRMS, calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{SSi}$ (M-tert-butyl) 411.1814 found 411.1812 .

(-)-(3S,5R,7S)8-(tert-Butyl-diphenyl-silanyloxy)-3,5,7-trimethyl-octanethioic acid S-ethyl ester (10)
($\mathrm{R}, \mathrm{S}_{\mathrm{Fe}}$)-Josiphos $4 \cdot \mathrm{CuBr}$ complex ($15.5 \mathrm{mg}, 0.0209 \mathrm{mmol}, 1 \mathrm{~mol} \%$) was dissolved in t -BuOMe (4 mL) under nitrogen. The mixture was cooled to $-75^{\circ} \mathrm{C}$ and methylmagnesium bromide (0.836 mL 2.05 mmol , solution in diethyl ether) was added dropwise over 10 min . After stirring for 10 min , a solution of thioester $9(980 \mathrm{mg}, 2.09 \mathrm{mmol})$ in t -BuOMe (6 mL) was added via syringe pump over 1 h . The reaction mixture was stirred at $-75^{\circ} \mathrm{C}$ for 17 h , then quenched by the addition of MeOH and allowed to warm to room temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and after phase separation and extraction of the aqueous phase with diethyl ether, the combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and purified by flash chromatography (eluent pentane/ether 40:1) to afford $\mathbf{1 0}$ as a colourless oil ($890 \mathrm{mg}, 87 \%$ yield)
syn/anti ratio by $\mathrm{NMR}=>98: 2$
$[\alpha]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-6.8\left(c=1.13, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67$ (dd, $\left.J=1.7,7.7 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.41(\mathrm{~m}, 6 \mathrm{H}), 3.46(\mathrm{dd}, J=9.8,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.41$, (dd, $J=9.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{dd}, J=5.0,14.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.23(\mathrm{dd}, J=8.8,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 12 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): 199.22 (s), 135.60 (d), 134.03 (s), 129.47 (d), 127.54 (d), 68.74 (t), $50.93(\mathrm{t}), 44.71$ (t), 41.18 (t), 33.08 (d), $28.59(\mathrm{~d}), 27.61(\mathrm{~d}), 26.88(\mathrm{q}), 23.24(\mathrm{t}), 20.53(\mathrm{q}), 20.46(\mathrm{q})$, 19.29 (s), 17.98 (q), 14.80 (q).

HRMS, calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{SSi}$ (M-tert-butyl) 427.2127 found 427.2142 .

(-)-(6R,8S,10S,E)-11-(tert-butyldiphenylsilyloxy)-6,8,10-trimethylundec-3-en-2-one (12)

To a stirred mixture of $\mathbf{1 0}(1.50 \mathrm{~g}, 3.10 \mathrm{mmol})$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added DIBALH (4.01 mL , $4.01 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) at $-65^{\circ} \mathrm{C}$ under nitrogen. Stirring was continued until the reduction was completed ($3-4 \mathrm{~h}$). The reaction mixture was quenched in 45 mL saturated aqueous Rochelle salt (potassium sodium tartrate) and stirred for 30 min . The phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure to yield crude aldehyde which was purified by flash chromatography (eluent pentane/ether 40:1) to give 11 which in turn was used in the next step without complete removal of the eluent.

A solution of (EtO) $)_{2} \mathrm{POCH}_{2} \mathrm{COMe}(902.1 \mathrm{mg}, 4.648 \mathrm{mmol}, 1.5 \mathrm{eq})$ dissolved in THF (20 mL) under nitrogen and cooled to $0{ }^{\circ} \mathrm{C}$, $(2.32 \mathrm{~mL}, 3.718 \mathrm{mmol}, 1.2 \mathrm{eq}) \mathrm{n}$-butyllithium (1.6 M in hexane) was added slowly at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 min at rt . Then the aldehyde $\mathbf{1 1}$ was dissolved in 3 mL THF was slowly added and the reaction mixture stirred at rt for 10 h . the reaction mixture was washed with distilled water and extracted with diethyl ether. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure to yiled crude $\mathbf{1 2}$. Purification by flash chromatography (eluent pentane/ether 40:1) afforded α, β-unsaturated ketone $\mathbf{1 2}$ as a colourless oil ($1.32 \mathrm{~g}, 92 \%$ yield over 2 steps)
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-9.2\left(\mathrm{c}=1.12, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{dd}, J=7.9,1.6,4 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 6 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~d}$, $J=15.9,1 \mathrm{H}), 3.46(\mathrm{ddd}, J=16.2,9.8,5.8,2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{dd}, J=12.0$, $6.6,2 \mathrm{H}), 1.58-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=6.7,1 \mathrm{H}), 1.20(\mathrm{~s}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.96-0.77(\mathrm{~m}, 13 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.50,147.42,135.75,134.13,132.61,129.65,127.70,68.83$, 44.96, 41.36, 39.58, 33.30, 30.06, 27.77, 27.04, 20.88, 20.59, 19.44, 18.16.

HRMS, calcd for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$487.3008, found 487.2988.

(-)- (4S,6R,8S,10S)-11-(tert-butyldiphenylsilyloxy)-4,6,8,10-tetramethylundecan-2-one (13a)
For the experimental procedure and spectroscopic data of 13a see the paper.

(-)- (4S,6R,8S,10S)-11-(tert-butyldiphenylsilyloxy)-4,6,8,10-tetramethylundecan-2-one (13b)
($\mathrm{S}, \mathrm{R}_{\mathrm{Fe}}$)-Josiphos (4) $\cdot \mathrm{CuBr}$ complex ($18.5 \mathrm{mg}, 0.0249 \mathrm{mmol}, 1 \mathrm{~mol} \%$) was dissolved in t -BuOMe (5 mL) under nitrogen. The mixture was cooled to $-80^{\circ} \mathrm{C}$ and methylmagnesium bromide (0.996 mL 2.44 mmol , solution in diethyl ether) was added dropwise over 10 min . After stirring for 10 min , a solution of thioester $\mathbf{1 2}(1.2 \mathrm{~g}, 2.49 \mathrm{mmol})$ in t -BuOMe (7.2 mL) was added via syringe pump over 1.5 h . The reaction mixture was stirred at $-80^{\circ} \mathrm{C}$ for 18 h , then quenched by the addition of MeOH and allowed to warm to room temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and after phase separation and extraction of the aqueous phase with diethyl ether, the combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and purified by flash chromatography (eluent pentane/ether 40:1) to afford 13b as a colourless oil ($1.05 \mathrm{~g}, 88 \%$ yield)
syn/anti ratio by NMR = > 99/1
$[\alpha]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-10.6\left(\mathrm{c}=0.47, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=7.2,4 \mathrm{H}), 7.39(\mathrm{~d}, J=7.3,6 \mathrm{H}), 3.47(\mathrm{dt}, J=15.8,9.6$, $2 \mathrm{H}), 2.41(\mathrm{~d}, J=11.3,1 \mathrm{H}), 2.10(\mathrm{~d}, J=9.6,4 \mathrm{H}), 1.72(\mathrm{~s}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 2 \mathrm{H}), 1.28(\mathrm{ddd}, J=40.1,16.4$, $10.4,7 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.96-0.79(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 209.42,135.84,134.34,129.69,127.76,68.87,51.08,45.68$, 44.91, 41.32, 33.39, 30.66, 27.78, 27.10, 21.01, 19.53, 18.43.

HRMS, calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 503.3321$ found 503.3313 .

(-)- (2S,4R,6S,8S)-9-(tert-butyldiphenylsilyloxy)-2,4,6,8-tetramethylnonan-1-ol (15)

To a stirred mixture of $\mathbf{1 3 a}(2.0 \mathrm{~g}, 4.16 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ was added $m \mathrm{CPBA}(2.86 \mathrm{~g}, 16.6$ mmol) at rt. After stirring 12 h at $60^{\circ} \mathrm{C}$ the reaction mixture was cooled to rt. The solvent was evaporated and the crude reaction mixture was purified by flash chromatography (eluent pentane/ether $40: 1$) to afford $\mathbf{1 4}$ as a colorless oil ($1.55 \mathrm{~g}, 75 \%$ yield +400 mg recovered starting material). Repeating the above procedure for recovered starting material to afford $\mathbf{1 4}$ in an overall yield of $1.75 \mathrm{~g}, 85 \%$ yield.

To a stirred solution of $\mathbf{1 4}(1.7 \mathrm{~g} 3.42 \mathrm{mmol})$ in 4 mL of methanol was added potassium carbonate ($520 \mathrm{mg}, 3.76 \mathrm{mmol}$). The reaction was stirred at rt for 3 h and the diluted with water. After phase separation and extraction of the aqueous phase with diethyl ether, the combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and purified by flash chromatography (eluent pentane/EtOAc 40:4) to afford $\mathbf{1 5}$ as a colourless oil ($1.5 \mathrm{~g}, 97 \%$ yield) Spectral data of $\mathbf{1 5}$ were consistent with those reported in the literature. ${ }^{2}$
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-9.4\left(\mathrm{c}=1.39, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=7.1,4 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 6 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 3.55-3.40$ (m, 4H), $1.79-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.07$ (s, 9H), $0.97-0.75$ (m, 18H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 135.83,134.28,129.68,127.76,69.47,69.03,46.34,41.71,40.15$, 33.32, 27.61, 27.26, 27.11, 20.81, 20.52, 19.53, 18.25, 16.30.

HRMS, calcd for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 477.3165$ found 477.3159 .

(-)- (2S,4S,6R,8S)-2,4,6,8-tetramethyl-9-(tetrahydro-2H-pyran-2-yloxy)nonan-1-ol (17)
To a stirred mixture of $\mathbf{1 5}(1.4 \mathrm{~g}, 3.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added dihydropyran (2.78 mL , 30.8 mmol) and PPTS ($77 \mathrm{mg}, 0.31 \mathrm{mmol}$). The resulting solution was stirred at rt for 4 h . The reaction was quenched with sat. aq. NaHCO_{3} and after phase separation and extraction of the aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic phases were dried over MgSO_{4}, concentrated

[^1]under reduced pressure and purified by flash chromatography (eluent pentane/EtOAc 50:2) to afford 16 as a colourless oil ($1.62 \mathrm{~g}, 98 \%$ yield)

To a stirred mixture of $\mathbf{1 6}(1.60 \mathrm{~g}, 2.97 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ was added TBAF (1.0 M solution in THF, $8.91 \mathrm{~mL}, 8.91 \mathrm{mmol}$). The resulting solution was stirred for 5 h , quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and after phase separation and extraction of the aqueous phase with EtOAc, the combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and purified by flash chromatography (eluent pentane/EtOAc 50:8) to afford 17 as a colourless oil ($856 \mathrm{mg}, 96 \%$ yield)
$[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D}=-4.2\left(\mathrm{c}=0.30, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.61-4.52(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.51(\operatorname{dddd}, J=12.9,9.3$, $8.5,5.2,3 \mathrm{H}), 3.41-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{ddd}, J=16.5,9.4,6.3,1 \mathrm{H}), 1.86-1.50(\mathrm{~m}, 11 \mathrm{H}), 1.33-$ $1.16(\mathrm{~m}, 3 \mathrm{H}), 1.11-1.06(\mathrm{~m}, 1 \mathrm{H}), 0.92-0.83(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 99.19,98.74,74.09,73.83,68.29,62.37,45.96,41.50,40.63,33.21$, 30.83, 27.49, 27.27, 25.66, 20.95, 20.48, 19.59, 17.64, 17.00.

HRMS, calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right) 301.2664$ found 301.2682.

(-)- (4S,6S,8R,10S)-4-methoxybenzyl 4,6,8,10-tetramethyl-3-oxo-11-(tetrahydro-2H-pyran-2yloxy)undecanoate (20)

To a stirred mixture of $\mathbf{1 7}(800 \mathrm{mg}, 2.66 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ were added molecular sieves $4 \AA$ $(1.5 \mathrm{~g})$, NMO ($657 \mathrm{mg}, 5.52 \mathrm{mmol}$) and TPAP ($49 \mathrm{mg}, 140 \mu \mathrm{~mol}$). The reaction was stirred at rt for 1 h , filtered through a silica pad, concentrated under reduced pressure and purified by flash chromatography (eluent pentane/EtOAc 50:2) to afford 18 as a colourless oil ($698 \mathrm{mg}, 88 \%$ yield).

To a stirred mixture of samarium iodide (0.1 M solution in THF, $33 \mathrm{~mL}, 3.3 \mathrm{mmol}$) were added $\mathbf{1 8}$ ($198 \mathrm{mg}, 0.66 \mathrm{mmol}$) and 4-methoxybenzyl 2-bromoacetate ($187 \mathrm{mg}, 0.72 \mathrm{mmol}$) in THF (3 mL) at $-78^{\circ} \mathrm{C}$. The reaction was stirred for 30 min and then treated with hexane $(35 \mathrm{~mL})$ followed by silica gel (15 g). The mixture was allowed to warm to rt and stirred for 30 min . The mixture was filtered through a short plug of silica gel, concentrated under reduced pressure and purified by flash chromatography (eluent pentane/EtOAc 50:10) to afford 19 as a colorless oil ($284 \mathrm{mg}, 90 \%$ yield)

To a stirred mixture of $\mathbf{1 9}(215 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.2 \mathrm{~mL})$ were added molecular sieves $4 \AA$ $(0.5 \mathrm{~g})$, NMO $(111 \mathrm{mg}, 0.93 \mathrm{mmol})$ and TPAP $(8.2 \mathrm{mg}, 24 \mu \mathrm{~mol})$. The reaction was stirred at rt for 2 h , filtered through a silica pad, concentrated under reduced pressure and purified by flash chromatography (eluent pentane/EtOAc $55: 7$) to afford 20 as a colourless oil ($182 \mathrm{mg}, 85 \%$ yield).
$[\alpha]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-5.7\left(\mathrm{c}=1.55, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~s}, 2 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 4 \mathrm{H})$, $3.50(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~d}, J=30.7,1 \mathrm{H}), 2.74(\mathrm{~s}, 1 \mathrm{H}), 1.69(\mathrm{~d}, J=91.5,11 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H}), 1.09(\mathrm{~s}$, $6 \mathrm{H}), 0.87$ (s, 10H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 206.51,172.80,159.90,130.35,127.66,114.07,99.22,98.81$, $73.80,67.01,65.66,62.26,55.31,47.82,46.26,45.93,44.40,41.18,40.84,40.34,37.55,30.93$, 27.97, 27.23, 25.68, 20.60, 20.26, 19.68, 17.10.

HRMS, calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{6}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 499.3036$ found 499,3031.

(-)- (3S,4S,6S,8R,10S)-4-methoxybenzyl 3-hydroxy-4,6,8,10-tetramethyl-11-(tetrahydro-2H-pyran-2-yloxy)undecanoate (21)

For the experimental procedure and spectroscopic data of $\mathbf{2 1}$ see the paper.

(-)- (3S,4S,6S,8R,10S)-3-(tert-butyldimethylsilyloxy)-4,6,8,10-tetramethyl-11-(tetrahydro-2H-pyran-2-yloxy)undecanoic acid (A)

To a stirred mixture of $21(125 \mathrm{mg}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$ was added 2,6-lutidine $(51 \mu \mathrm{l}$, $0.44 \mathrm{mmol})$ followed by TBSOTf ($77 \mu 1,0.34 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 1 h and was quenched with water, after phase separation and extraction of the aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic phases were dried over MgSO_{4}, and concentrated under reduced pressure. Crude compound $\mathbf{2 2}$ was employed in the next reaction without further purification.

To the stirred mixture of $\mathbf{2 2}$ in $\mathrm{THF}(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.55 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, $\mathrm{LiOH}(12 \mathrm{mg}, 0.51 \mathrm{mmol})$ was added and the mixture was stirred for 4 h . after quenching with water, phase separation and extraction of the aqueous phase with EtOAc, the combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and purified by flash chromatography (eluent pentane/EtOAc $50: 12$) to afford \mathbf{A} as a colourless oil ($104 \mathrm{mg}, 85 \%$ yield over 2 steps). Spectral data of A were consistent with those reported in the literature. ${ }^{3}$
$[\alpha]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-33.2\left(\mathrm{c}=0.25, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.58(\mathrm{~d}, J=11.4,1 \mathrm{H}), 4.02(\mathrm{~d}, J=3.2,1 \mathrm{H}), 3.86(\mathrm{~s}, 1 \mathrm{H}), 3.61-3.44$ (m, 2H), $3.26-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=6.2,2 \mathrm{H}), 1.69(\mathrm{dd}, J=62.3,52.6,12 \mathrm{H}), 1.37(\mathrm{~s}, 1 \mathrm{H}), 1.25$ (s, 3H), $0.89-0.84(\mathrm{~m}, 21 \mathrm{H}), 0.07(\mathrm{dd}, J=7.9,2.8,6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.22,99.10,98.74,74.18,74.00,72.66,62.26,45.93,40.58,40.26$, 39.47, 36.12, 31.05, 30.85, 29.88, 27.63, 27.35, 26.03, 25.70, 20.99, 20.86, 19.69, 18.24, 16.83, 15.41, -4.33, -4.46.

HRMS, calcd for $\mathrm{C}_{26} \mathrm{H}_{52} \mathrm{O}_{5} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right) 473.3657$ found 473.3656 .

Experimental Details: Synthesis of the lower part of Borrelidin.

(-)-(1R, 2R)-methyl 2-hydroxycyclopentanecarboxylate (24)
For the experimental procedure and spectroscopic data of $\mathbf{2 4}$ see the paper.

[^2]Enantiomeric excess and absolute configuration were determined by HPLC (Chiralcel OD, 250*4.6, $10 \mu \mathrm{~m}$), eluent 99/1 heptane/IPA, 23.883 min (major), 29.856 min (minor) shows 97% ee. ${ }^{4}$

HPLC Shimadzu-System.
Column: Chiralcel OD, 250*4.6, 10 um .
Eluent: 99/1 Heptane/IPA.

$1: 220 \mathrm{~nm}, 8 \mathrm{~nm} \quad \mathrm{Pk} \#$	Name	Retention Time	Area	Area Percent
1	1	12.885	812713	26.50
2	2	20.341	808090	26.35
3	3	24.384	751789	24.51
4	4	28.864	694294	22.64
Totals			3066886	100.00

HPLC Shimadzu-System.
Column: Chiralcel OD, 250*4.6, 10 um.
Eluent: 99/1 Heptane/IPA.

${ }^{4}$. R. Noyori, T. Ikeda, T. Ohkuma, M. Widhalm, M. Kitamura, H. Takaya, S. Akutagawa, N.
Sayo, T. Saito, T. Taketomi, H. Kumobayashi, Journal of the American Chemical Society 1989, 111, 9134; K.

(-)-(1R,2R)-methyl 2-(tetrahydro-2H-pyran-2-yloxy)cyclopentanecarboxylate (25)

To a stirred mixture of $\mathbf{2 4}(2.0 \mathrm{~g}, 13.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ were added dihydropyran $(1.39 \mathrm{~g}$, 16.7 mmol) and PPTS ($349 \mathrm{mg}, 1.4 \mathrm{mmol}$). The resulting solution was stirred at rt for 4 h . The reaction was quenched with sat. aq. NaHCO_{3} solution and after phase separation and extraction of the aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and purified by flash chromatography (eluent pentane/ether 50:7) to afford 25 as a colourless oil ($3.03 \mathrm{~g}, 96 \%$ yield)
$[\alpha]^{25}{ }_{\mathrm{D}}=-51.4\left(\mathrm{c}=1.07, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.64(\mathrm{dt}, J=19.6,3.8,1 \mathrm{H}), 4.46-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.78(\mathrm{~m}, 1 \mathrm{H})$, $3.73-3.61(\mathrm{~m}, 3 \mathrm{H}), 3.53-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=39.1,1 \mathrm{H}), 2.10-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.60(\mathrm{~m}$, $6 \mathrm{H}), 1.51$ (dd, $J=11.4,7.5,4 \mathrm{H})$.
${ }^{13}{ }^{1} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.00,174.90,97.65,97.32,80.67,80.36,61.91,61.65,51.07$, $50.90,50.48,50.10,33.07,31.39,30.45,28.41,27.77,25.03,22.91,22.45,19.14$.

HRMS, calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 251.1259$ found 251.1253 .

(-)-((1S,2R)-2-(tetrahydro-2H-pyran-2-yloxy)cyclopentyl)methanol (26)

To $\mathrm{LiAlH}_{4}(731 \mathrm{mg}, 19.3 \mathrm{mmol})$ suspended in dry ether $(65 \mathrm{~mL})$ was added dropwise $\mathbf{2 5}(2.93 \mathrm{~g}$, $12.8 \mathrm{mmol})$ in dry ether $(17 \mathrm{~mL})$ for 1 h under nitrogen. After being stirred for 10 h at rt , the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and water $(1.08 \mathrm{~mL})$ was added carefully, followed by the addition of 15% aqueous $\mathrm{NaOH}(1.08 \mathrm{~mL})$ and water $(3.2 \mathrm{~mL})$. The white precipitate was filtered off, and the filtrate was concentrated under reduced pressure and purified by flash chromatography (eluent pentane/EtOAc 1:1) to afford 26 as a colourless oil ($2.38 \mathrm{~g}, 93 \%$ yield)
$[\alpha]^{25}{ }_{\mathrm{D}}=-16.2\left(\mathrm{c}=1.09, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.66(\mathrm{ddd}, J=8.4,5.1,2.6,1 \mathrm{H}), 4.04-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.42(\mathrm{~m}$, $3 \mathrm{H}), 2.48(\mathrm{~s}, 1 \mathrm{H}), 2.20-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.45(\mathrm{~m}, 11 \mathrm{H}), 1.26-1.09(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR (101 MHz, CDCl_{3}) $\delta 98.29,97.97,81.26,80.87,65.10,64.70,63.07,62.49,47.75,33.25$, $31.62,31.03,30.88,26.74,25.31,25.19,22.81,22.10,19.95,19.64$.

HRMS, calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{3}\left(\mathrm{M}-\mathrm{H}^{-}\right)$199.1412, found 199.1328.

(-)-2-((1R,2S)-2-((4-methoxybenzyloxy)methyl)cyclopentyloxy)tetrahydro-2H-pyran (27)

To a stirred mixture of $26(2.25 \mathrm{~g}, 11.3 \mathrm{mmol})$ in DMF (60 mL) was added sodium hydride (60% in oil, $351 \mathrm{mg}, 14.6 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$. After being stirred for 30 min , to the resulting suspension was added $\mathrm{PMBCl}(2.11 \mathrm{~g}, 13.5 \mathrm{mmol})$ and then allowed to warmed upto rt . The reaction was quenched with water, and after phase separation and extraction of the aqueous phase with EtOAc, the combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and purified by flash chromatography (eluent pentane/ether 50:7) to afford 27 as a colourless oil ($3.42 \mathrm{~g}, 95 \%$ yield)
$[\alpha]^{25}{ }_{D}=-31.6\left(\mathrm{c}=0.98, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}, J=1.5,1 \mathrm{H}), 7.25(\mathrm{q}, J=2.4,1 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 2 \mathrm{H}), 4.65$ $-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=4.7,2 \mathrm{H}), 3.92$ (dddd, $J=20.5,10.2,8.9,4.6,2 \mathrm{H}), 3.81-3.78$ (m, 3H), $3.53-3.31(\mathrm{~m}, 3 \mathrm{H}), 2.30-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.50(\mathrm{~m}, 12 \mathrm{H}), 1.38-1.23(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.92,130.61,129.06,113.55,98.42,96.47,81.28,78.84,72.40$, $72.11,62.73,61.93,55.05,45.95,33.39,31.26,30.97,27.76,27.41,25.47,22.94,22.77,20.03$, 19.41.

HRMS, calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 343.1885$ found 343.1875 .

(+)-(1R,2S)-2-((4-methoxybenzyloxy)methyl)cyclopentanol (28)

To a stirred mixture of $27(3.52 \mathrm{~g}, 11.0 \mathrm{mmol})$ in EtOH (100 mL) was added PPTS ($400 \mathrm{mg}, 1.59$ mmol), and the resulting solution was stirred at $50{ }^{\circ} \mathrm{C}$. After 12 h , the reaction was diluted with water, and after phase separation and extraction of the aqueous phase with EtOAc, the combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and purified by flash chromatography (eluent pentane/EtOAc 50:12) to afford 28 as a colourless oil ($2.49 \mathrm{~g}, 96 \%$ yield)
$[\alpha]^{25}=+1.2\left(\mathrm{c}=1.15, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{~d}, J=0.7,1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 6.92-6.81(\mathrm{~m}, 2 \mathrm{H}), 4.50-4.42$ $(\mathrm{m}, 2 \mathrm{H}), 3.97(\mathrm{q}, J=6.9,1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{dd}, J=8.9,5.3,1 \mathrm{H}), 3.33(\mathrm{t}, J=9.1,1 \mathrm{H}), 2.20(\mathrm{~s}$, $1 \mathrm{H}), 2.07-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.58$ (ddd, $J=15.9,9.1,5.3,2 \mathrm{H}), 1.28-1.08(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.21,130.41,129.26,113.83,77.85,73.55,72.90,55.26,47.60$, 34.05, 26.69, 21.92.

HRMS, calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}\left(\mathrm{M}-\mathrm{H}^{+}\right)$235.1412, found 235.1328.

(-)-(1R,2S)-2-((4-methoxybenzyloxy)methyl)cyclopentyl 4-methylbenzenesulfonate (29)

To a stirred mixture of $\mathbf{2 8}(805 \mathrm{mg}, 3.40 \mathrm{mmol})$ and pyridine $(3 \mathrm{~mL})$, was added tosyl chloride (1.29 $\mathrm{g}, 6.8 \mathrm{mmol}$) at rt under nitrogen, and the mixture was stirred for 12 h . The reaction mixture was
concentrated under reduced pressure and purified by flash chromatography (eluent pentane/ether $40: 20$) to afford 29 as a colourless oil ($1.29 \mathrm{~g}, 98 \%$ yield)
$[\alpha]^{25}{ }_{\mathrm{D}}=-23.5\left(\mathrm{c}=1.18, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCL}_{3}\right) \delta 7.77(\mathrm{~d}, J=7.6,2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.2,2 \mathrm{H})$, 6.87 (d, $J=8.7,2 \mathrm{H}$), 4.77 (dd, $J=8.8,4.4,1 \mathrm{H}$), $4.34-4.26$ (m, 2H), $3.84-3.77$ (m, 3H), 3.23 (d, J $=5.9,2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.56(\mathrm{~m}, 6 \mathrm{H}), 1.32(\mathrm{ddd}, J=27.8,17.8,10.2,1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.21,144.50,134.36,130.50,129.81,129.15,127.92,113.82$, 86.66, 72.63, 70.36, 55.39, 46.04, 32.79, 26.94, 22.95, 21.73.

HRMS, calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~S}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 413.1399$ found 413.1385.

(+) (1S,2R)-2-((4-methoxybenzyloxy)methyl)cyclopentanecarbonitrile (30)
To a stirred mixture of $29(1.22 \mathrm{~g}, 3.14 \mathrm{mmol})$ in DMSO $(15 \mathrm{~mL})$, was added $\mathrm{NaCN}(0.310 \mathrm{~g}, 6.29$ mmol) and the resulting solution was stirred at $50^{\circ} \mathrm{C}$. After 12 h , the reaction was diluted with water, and after phase separation and extraction of the aqueous phase with EtOAc, the combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and purified by flash chromatography (eluent pentane/ether $50: 10$) to afford $\mathbf{3 0}$ as a colourless oil ($615 \mathrm{mg}, 80 \%$ yield)
$[\alpha]^{25}{ }_{\mathrm{D}}=+36.8\left(\mathrm{c}=1.05, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.55-4.41(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.65-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{td}, J=7.4,4.7,1 \mathrm{H}), 2.42-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.73-$ $1.60(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=11.1,1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.15,130.18,129.34,121.08,113.69,73.07,71.23,55.13,42.52$, 32.13, 30.84, 27.39, 23.51.

HRMS, calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 268.1313$ found 268.1306.

(-)-(1R,2R)-2-((4-methoxybenzyloxy)methyl)cyclopentanecarbaldehyde (31)

For the experimental procedure and spectroscopic data of $\mathbf{3 1}$ see the paper.

(+)-(S)-1-((1R,2R)-2-((4-methoxybenzyloxy)methyl)cyclopentyl)but-3-en-1-ol (32)

To a stirred mixture of $\mathbf{3 1}(1.2 \mathrm{~g}, 4.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added allyltrimethylsilane (1.17 $\mathrm{mL}, 1.77 \mathrm{mmol}$) and magnesium bromide diethyl etherate ($1.24 \mathrm{~g}, 4.83 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred for 10 h at $0^{\circ} \mathrm{C}$, then quenched with 2 M HCl and stirred for 1 h , after phase separation and extraction of the aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and purified by flash chromatography (eluent pentane/Ether 55:10) to afford 30 as a colourless oil ($1.2 \mathrm{~g}, 86 \%$ yield). Spectral data of 32 were consistent with those reported in the literature. ${ }^{3}$
$[\alpha]^{25}{ }_{\mathrm{D}}=+6.3\left(\mathrm{c}=0.32, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{ddd}, J=7.5,4.7,2.3,2 \mathrm{H}), 6.05-5.89(\mathrm{~m}$, $1 \mathrm{H}), 5.15-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{qd}, J=11.8,4.3,2 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 3 \mathrm{H}), 3.50(\mathrm{dt}, J=$ $8.8,4.4,1 \mathrm{H}), 3.43-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{td}, J=10.0,4.4,1 \mathrm{H}), 2.37(\mathrm{dd}, J=10.1,3.9,1 \mathrm{H}), 2.16-$ $2.00(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.41(\mathrm{~m}, 5 \mathrm{H}), 1.23(\mathrm{td}, J=12.3,5.5,2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.36,135.87,129.50,116.48,113.90,75.06,74.35,72.96,55.26$, $51.73,43.98,40.56,31.08,30.03,24.62$.

HRMS, calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}\left(\mathrm{M}-\mathrm{H}^{+}\right)$289.1882, found 289.1798.

(+)-(S,2E,4E)-2-bromo-7-hydroxy-7-((1R,2R)-2-((4 methoxybenzyloxy)methyl) cyclopentyl) hepta-2,4-dienenitrile (B) ${ }^{5}$

For the experimental procedure and spectroscopic data of \mathbf{B} see the paper.
Spectral data of \mathbf{B} were consistent with those reported in the literature. ${ }^{3}$

Final steps in the synthesis of Borrelidin (1).

Borrelidin (1)

The coupling of \mathbf{A} and \mathbf{B} above scheme as described by Omura et al results in 1. ${ }^{3}$
5. B. R. Iorga, L. Savignac. P, J. Chem. Soc., Perkin Trans. 1 2000, 3311.

NMR Spectra: Upper part of Borrelidin.
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13}$ C-NMR and APT

${ }^{1} \mathrm{H}-\mathrm{NMR}$

port (t1)

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{1} \mathrm{H}$-NMR

${ }^{1} \mathrm{H}-\mathrm{NMR}$

Coss)

ppm (f1)
${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}$-NMR and APT

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}$-NMR and APT

${ }^{13} \mathrm{C}-\mathrm{NMR}$ and APT

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}$-NMR and APT

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}$-NMR and APT

${ }^{13} \mathrm{C}$-NMR and APT

${ }^{13} \mathrm{C}-\mathrm{NMR}$ and APT

${ }^{1} \mathrm{H}$-NMR

Upper part of Borrelidin.

NMR Spectra: Lowerpart of Borrelidin.

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\mathrm{NMR}$ and APT

${ }^{13} \mathrm{C}-\mathrm{NMR}$ and APT

${ }^{13} \mathrm{C}$-NMR and APT

${ }^{1} \mathrm{H}$-NMR

${ }^{13}$ C-NMR and APT

${ }^{13} \mathrm{C}$-NMR and APT

NOE Experiment of Cis and Trans 2-((4 methoxybenzyloxy) methyl) cyclopentanecarbonitrile.

${ }^{1} \mathrm{H}$-NMR

${ }^{13} \mathrm{C}-\mathrm{NMR}$ and APT

${ }^{1} \mathrm{H}-\mathrm{NMR}$

${ }^{13} \mathrm{C}$-NMR and APT

${ }^{1} \mathrm{H}-\mathrm{NMR}$

Lower part of Borrelidin.

${ }^{13} \mathrm{C}-\mathrm{NMR}$ and APT

[^0]: ${ }^{1}$. B. ter Horst, B. L. Feringa, A. J. Minnaard, Org. Lett. 2007, 9, 3013.

[^1]: ${ }^{2}$. T. Novak, Z. Tan, B. Liang, , E.-I. Negishi, J. Am. Chem. Soc. 2005, 127, 2838.

[^2]: ${ }^{3}$. T. Nagamitsu, D. Takano, T. Fukuda, K. Otoguro, I. Kuwajima, Y. Harigaya, S. Omura, Org. Lett. 2004

