SUPPLEMENTARY INFORMATION 2

On the Mechanism of the Copper-Catalyzed Enantioselective 1,4-Addition of Grignard Reagents to α , β -Unsaturated Carbonyl Compounds

Syuzanna R. Harutyunyan, Fernando López, Wesley R. Browne, Arkaitz Correa, Diego Peña, Ramon Badorrey, Auke Meetsma, Adriaan J. Minnaard,* Ben L. Feringa*

Department of Organic Chemistry and Molecular Inorganic Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

E-mail: B.L.Feringa@ rug.nl

Figure S1. ¹H (left) and ³¹P (right) NMR spectra of the complex **1a** in CD_2Cl_2 at -60 ⁰C.

Figure S2. APT NMR (100.57 MHz) spectra of the complex 1a in CD₂Cl₂ at RT.

Figure S3. ¹H (left) and ³¹P (right) NMR spectra of the complex **1b** in CD_2Cl_2 at -60 ⁰C.

Figure S4. ¹³C NMR (125.7 MHz) spectra of the complex 1b in CD_2Cl_2 at RT.

Figure S5. ¹H (left) and ³¹P (right) NMR spectra of the complex 1c in CD_2Cl_2 at -60 ⁰C.

Figure S6. ¹³C NMR (76.43 MHz) spectra of the complex 1c in CD_2Cl_2 at RT.

Figure S7. ¹H (left) and ³¹P (right) NMR spectra of the complex **2a** in CD_2Cl_2 at -60 ⁰C.

Figure S8. ¹³C NMR (76.43 MHz) spectra of the complex 2a in CD_2Cl_2 at RT.

Figure S9. ¹H (left) and ³¹P (right) NMR spectra of the complex **3** in CD₂Cl₂ at RT.

Figure S10. ¹³C NMR (76.43 MHz) spectra of the complex 3 in CD_2Cl_2 at RT.

Figure S11. ¹H (left) and ³¹P (right) NMR spectra of the complex **1a** and MeMgBr in CD₂Cl₂ at -60 0 C.

Figure S12. ¹H (left) and ³¹P (right) NMR spectra of the complex **1a** and MeLi (3equiv.) in CD_2Cl_2 at -60 ⁰C.

Figure S13. ¹H (left) and ³¹P (right) NMR spectra of the complex **1a**, 3 equiv. of MeMgBr and 3 equiv. dioxane in CD_2Cl_2 at -60 ⁰C.

Figure S14. ¹H (left) and ³¹P (right) NMR spectra of the complex **1a** in toluene- d_8 at -60.

Figure S15. ¹H (left) and ³¹P NMR spectra of the complex **1a** and MeMgBr in toluene- d_8 at -60 ⁰C.

Figure S16. ¹H (left) and ³¹P NMR spectra of the complex **1a** in THF- d_8 at -60.

Figure S17. ¹H (left) and ³¹P NMR spectra of the complex **1a** and MeMgBr in THF- d_8 at -60.

Figure S18. ¹H (left) and ³¹P NMR spectra of the complex **1b** and MeMgCl in CD₂Cl₂ at -60.

Figure S19. ¹H (left) and ³¹P NMR spectra of the complex 1c and MeMgI in CD_2Cl_2 at -60.

Figure S20. ¹H (left) and ³¹P NMR spectra of the species **B** formed from **A** in CD_2Cl_2 at -60.