183 research outputs found

    Time-varying Learning and Content Analytics via Sparse Factor Analysis

    Full text link
    We propose SPARFA-Trace, a new machine learning-based framework for time-varying learning and content analytics for education applications. We develop a novel message passing-based, blind, approximate Kalman filter for sparse factor analysis (SPARFA), that jointly (i) traces learner concept knowledge over time, (ii) analyzes learner concept knowledge state transitions (induced by interacting with learning resources, such as textbook sections, lecture videos, etc, or the forgetting effect), and (iii) estimates the content organization and intrinsic difficulty of the assessment questions. These quantities are estimated solely from binary-valued (correct/incorrect) graded learner response data and a summary of the specific actions each learner performs (e.g., answering a question or studying a learning resource) at each time instance. Experimental results on two online course datasets demonstrate that SPARFA-Trace is capable of tracing each learner's concept knowledge evolution over time, as well as analyzing the quality and content organization of learning resources, the question-concept associations, and the question intrinsic difficulties. Moreover, we show that SPARFA-Trace achieves comparable or better performance in predicting unobserved learner responses than existing collaborative filtering and knowledge tracing approaches for personalized education

    A Geometric Variational Approach to Bayesian Inference

    Get PDF
    We propose a novel Riemannian geometric framework for variational inference in Bayesian models based on the nonparametric Fisher-Rao metric on the manifold of probability density functions. Under the square-root density representation, the manifold can be identified with the positive orthant of the unit hypersphere in L2, and the Fisher-Rao metric reduces to the standard L2 metric. Exploiting such a Riemannian structure, we formulate the task of approximating the posterior distribution as a variational problem on the hypersphere based on the alpha-divergence. This provides a tighter lower bound on the marginal distribution when compared to, and a corresponding upper bound unavailable with, approaches based on the Kullback-Leibler divergence. We propose a novel gradient-based algorithm for the variational problem based on Frechet derivative operators motivated by the geometry of the Hilbert sphere, and examine its properties. Through simulations and real-data applications, we demonstrate the utility of the proposed geometric framework and algorithm on several Bayesian models

    Learning a Factor Model via Regularized PCA

    Full text link
    We consider the problem of learning a linear factor model. We propose a regularized form of principal component analysis (PCA) and demonstrate through experiments with synthetic and real data the superiority of resulting estimates to those produced by pre-existing factor analysis approaches. We also establish theoretical results that explain how our algorithm corrects the biases induced by conventional approaches. An important feature of our algorithm is that its computational requirements are similar to those of PCA, which enjoys wide use in large part due to its efficiency

    MGMR: leveraging RNA-Seq population data to optimize expression estimation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA-Seq is a technique that uses Next Generation Sequencing to identify transcripts and estimate transcription levels. When applying this technique for quantification, one must contend with reads that align to multiple positions in the genome (multireads). Previous efforts to resolve multireads have shown that RNA-Seq expression estimation can be improved using probabilistic allocation of reads to genes. These methods use a probabilistic generative model for data generation and resolve ambiguity using likelihood-based approaches. In many instances, RNA-seq experiments are performed in the context of a population. The generative models of current methods do not take into account such population information, and it is an open question whether this information can improve quantification of the individual samples</p> <p>Results</p> <p>In order to explore the contribution of population level information in RNA-seq quantification, we apply a hierarchical probabilistic generative model, which assumes that expression levels of different individuals are sampled from a Dirichlet distribution with parameters specific to the population, and reads are sampled from the distribution of expression levels. We introduce an optimization procedure for the estimation of the model parameters, and use HapMap data and simulated data to demonstrate that the model yields a significant improvement in the accuracy of expression levels of paralogous genes.</p> <p>Conclusions</p> <p>We provide a proof of principal of the benefit of drawing on population commonalities to estimate expression. The results of our experiments demonstrate this approach can be beneficial, primarily for estimation at the gene level.</p

    Distinguishing Asthma Phenotypes Using Machine Learning Approaches.

    Get PDF
    Asthma is not a single disease, but an umbrella term for a number of distinct diseases, each of which are caused by a distinct underlying pathophysiological mechanism. These discrete disease entities are often labelled as asthma endotypes. The discovery of different asthma subtypes has moved from subjective approaches in which putative phenotypes are assigned by experts to data-driven ones which incorporate machine learning. This review focuses on the methodological developments of one such machine learning technique-latent class analysis-and how it has contributed to distinguishing asthma and wheezing subtypes in childhood. It also gives a clinical perspective, presenting the findings of studies from the past 5 years that used this approach. The identification of true asthma endotypes may be a crucial step towards understanding their distinct pathophysiological mechanisms, which could ultimately lead to more precise prevention strategies, identification of novel therapeutic targets and the development of effective personalized therapies

    Tabular: A Schema-driven Probabilistic Programming Language

    Get PDF
    We propose a new kind of probabilistic programming language for machine learning. We write programs simply by annotating existing relational schemas with probabilistic model expressions. We describe a detailed design of our language, Tabular, complete with formal semantics and type system. A rich series of examples illustrates the expressiveness of Tabular. We report an implementation, and show evidence of the succinctness of our notation relative to current best practice. Finally, we describe and verify a transformation of Tabular schemas so as to predict missing values in a concrete database. The ability to query for missing values provides a uniform interface to a wide variety of tasks, including classification, clustering, recommendation, and ranking

    Piecewise Approximate Bayesian Computation: fast inference for discretely observed Markov models using a factorised posterior distribution

    Get PDF
    Many modern statistical applications involve inference for complicated stochastic models for which the likelihood function is difficult or even impossible to calculate, and hence conventional likelihood-based inferential techniques cannot be used. In such settings, Bayesian inference can be performed using Approximate Bayesian Computation (ABC). However, in spite of many recent developments to ABC methodology, in many applications the computational cost of ABC necessitates the choice of summary statistics and tolerances that can potentially severely bias the estimate of the posterior. We propose a new “piecewise” ABC approach suitable for discretely observed Markov models that involves writing the posterior density of the parameters as a product of factors, each a function of only a subset of the data, and then using ABC within each factor. The approach has the advantage of side-stepping the need to choose a summary statistic and it enables a stringent tolerance to be set, making the posterior “less approximate”. We investigate two methods for estimating the posterior density based on ABC samples for each of the factors: the first is to use a Gaussian approximation for each factor, and the second is to use a kernel density estimate. Both methods have their merits. The Gaussian approximation is simple, fast, and probably adequate for many applications. On the other hand, using instead a kernel density estimate has the benefit of consistently estimating the true piecewise ABC posterior as the number of ABC samples tends to infinity. We illustrate the piecewise ABC approach with four examples; in each case, the approach offers fast and accurate inference

    Probabilistic machine learning and artificial intelligence.

    Get PDF
    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.The author acknowledges an EPSRC grant EP/I036575/1, the DARPA PPAML programme, a Google Focused Research Award for the Automatic Statistician and support from Microsoft Research.This is the author accepted manuscript. The final version is available from NPG at http://www.nature.com/nature/journal/v521/n7553/full/nature14541.html#abstract

    Independent Component Analysis of the Effect of L-dopa on fMRI of Language Processing

    Get PDF
    L-dopa, which is a precursor for dopamine, acts to amplify strong signals, and dampen weak signals as suggested by previous studies. The effect of L-dopa has been demonstrated in language studies, suggesting restriction of the semantic network. In this study, we aimed to examine the effect of L-dopa on language processing with fMRI using Independent Component Analysis (ICA). Two types of language tasks (phonological and semantic categorization tasks) were tested under two drug conditions (placebo and L-dopa) in 16 healthy subjects. Probabilistic ICA (PICA), part of FSL, was implemented to generate Independent Components (IC) for each subject for the four conditions and the ICs were classified into task-relevant source groups by a correlation threshold criterion. Our key findings include: (i) The highly task-relevant brain regions including the Left Inferior Frontal Gyrus (LIFG), Left Fusiform Gyrus (LFUS), Left Parietal lobe (LPAR) and Superior Temporal Gyrus (STG) were activated with both L-dopa and placebo for both tasks, and (ii) as compared to placebo, L-dopa was associated with increased activity in posterior regions, including the superior temporal area (BA 22), and decreased activity in the thalamus (pulvinar) and inferior frontal gyrus (BA 11/47) for both tasks. These results raise the possibility that L-dopa may exert an indirect effect on posterior regions mediated by the thalamus (pulvinar)
    corecore