1,266 research outputs found

    Solubility isotope effects in aqueous solutions of methane

    Get PDF
    The isotope effect on the Henry's law coefficients of methane in aqueous solution (H/D and C-12/C-13 substitution) are interpreted using the statistical mechanical theory of condensed phase isotope effects. The missing spectroscopic data needed for the implementation of the theory were obtained either experimentally (infrared measurements), by computer simulation (molecular dynamics technique), or estimated using the Wilson's GF matrix method. The order of magnitude and sign of both solute isotope effects can be predicted by the theory. Even a crude estimation based on data from previous vapor pressure isotope effect studies of pure methane at low temperature can explain the inverse effect found for the solubility of deuterated methane in water. (C) 2002 American Institute of Physics

    A Comprehensive Comparative Test of Seven Widely-Used Spectral Synthesis Models Against Multi-Band Photometry of Young Massive Star Clusters

    Get PDF
    We test the predictions of spectral synthesis models based on seven different massive-star prescriptions against Legacy ExtraGalactic UV Survey (LEGUS) observations of eight young massive clusters in two local galaxies, NGC 1566 and NGC 5253, chosen because predictions of all seven models are available at the published galactic metallicities. The high angular resolution, extensive cluster inventory and full near-ultraviolet to near-infrared photometric coverage make the LEGUS dataset excellent for this study. We account for both stellar and nebular emission in the models and try two different prescriptions for attenuation by dust. From Bayesian fits of model libraries to the observations, we find remarkably low dispersion in the median E(B-V) (~0.03 mag), stellar masses (~10^4 M_\odot) and ages (~1 Myr) derived for individual clusters using different models, although maximum discrepancies in these quantities can reach 0.09 mag and factors of 2.8 and 2.5, respectively. This is for ranges in median properties of 0.05-0.54 mag, 1.8-10x10^4 M_\odot and 1.6-40 Myr spanned by the clusters in our sample. In terms of best fit, the observations are slightly better reproduced by models with interacting binaries and least well reproduced by models with single rotating stars. Our study provides a first quantitative estimate of the accuracies and uncertainties of the most recent spectral synthesis models of young stellar populations, demonstrates the good progress of models in fitting high-quality observations, and highlights the needs for a larger cluster sample and more extensive tests of the model parameter space.Comment: Accepted for publication in MNRAS (14 Jan. 2016). 30 pages, 16 figures, 9 table

    The VLT-FLAMES Tarantula Survey XXI. Stellar spin rates of O-type spectroscopic binaries

    Full text link
    The initial distribution of spin rates of massive stars is a fingerprint of their elusive formation process. It also sets a key initial condition for stellar evolution and is thus an important ingredient in stellar population synthesis. So far, most studies have focused on single stars. Most O stars are however found in multiple systems. By establishing the spin-rate distribution of a sizeable sample of O-type spectroscopic binaries and by comparing the distributions of binary sub-populations with one another as well as with that of presumed single stars in the same region, we aim to constrain the initial spin distribution of O stars in binaries, and to identify signatures of the physical mechanisms that affect the evolution of the massive stars spin rates. We use ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial rotational velocities (\vrot) for components of 114 spectroscopic binaries in 30 Doradus. The \vrot\ values are derived from the full-width at half-maximum (FWHM) of a set of spectral lines, using a FWHM vs. \vrot\ calibration that we derive based on previous line analysis methods applied to single O-type stars in the VFTS sample. The overall \vrot\ distribution of the primary stars resembles that of single O-type stars in the VFTS, featuring a low-velocity peak (at \vrot < 200 kms) and a shoulder at intermediate velocities (200 < \vrot < 300 kms). The distributions of binaries and single stars however differ in two ways. First, the main peak at \vrot \sim100 kms is broader and slightly shifted toward higher spin rates in the binary distribution compared to that of the presumed-single stars. Second, the \vrot distribution of primaries lacks a significant population of stars spinning faster than 300 kms while such a population is clearly present in the single star sample.Comment: 16 pages, 16 figures, paper accepted in Astronomy & Astrophysic

    Searching for compact objects in the single-lined spectroscopic binaries of the young Galactic cluster NGC 6231

    Full text link
    Recent evolutionary computations predict that a few percent of massive OB stars in binary systems should have a dormant BH companion. Despite several reported X-ray quiet OB+BH systems over the last couple of years, finding them with certainty remains challenging. These have great importance as they can be gravitational wave (GW) source progenitors, and are landmark systems in constraining supernova kick physics. This work aims to characterise the hidden companions to the single-lined spectroscopic binaries (SB1s) in the B star population of the young open Galactic cluster NGC 6231 to find candidate systems for harbouring compact object companions. With the orbital solutions for each SB1 previously constrained, we applied Fourier spectral disentangling to multi-epoch optical VLT/FLAMES spectra of each target to extract a potential signature of a faint companion, and to identify newly disentangled double-lined spectroscopic binaries (SB2s). For targets where the disentangling does not reveal any signature of a stellar companion, we performed atmospheric and evolutionary modelling on the primary to obtain constraints on the unseen companion. Seven newly classified SB2 systems with mass ratios down to near 0.1 were identified. From the remaining targets, for which no faint companion could be extracted from the spectra, four are found to have companion masses in the predicted mass ranges of neutron stars (NSes) and BHes. Two of these have companion masses between 1 and 3.5 MM_{\odot}, making them potential hosts of NSes (or lower mass main sequence stars). The other two are between 2.5 to 8 MM_{\odot} and 1.6 and 26 MM_{\odot}, respectively, and so are identified as candidates for harbouring BH companions. However, unambiguous identification of these systems as X-ray quiet compact object harbouring binaries requires follow up observations.Comment: Submitted to A&

    Poly-MTO, {(CH_3)_{0.92} Re O_3}_\infty, a Conducting Two-Dimensional Organometallic Oxide

    Get PDF
    Polymeric methyltrioxorhenium, {(CH_{3})_{0.92}ReO_{3}}_{\infty} (poly-MTO), is the first member of a new class of organometallic hybrids which adopts the structural pattern and physical properties of classical perovskites in two dimensions (2D). We demonstrate how the electronic structure of poly-MTO can be tailored by intercalation of organic donor molecules, such as tetrathiafulvalene (TTF) or bis-(ethylendithio)-tetrathiafulvalene (BEDT-TTF), and by the inorganic acceptor SbF3_3. Integration of donor molecules leads to a more insulating behavior of poly-MTO, whereas SbF3_3 insertion does not cause any significant change in the resistivity. The resistivity data of pure poly-MTO is remarkably well described by a two-dimensional electron system. Below 38 K an unusual resistivity behavior, similar to that found in doped cuprates, is observed: The resistivity initially increases approximately as ρ\rho \sim ln(1/T(1/T) before it changes into a T\sqrt{T} dependence below 2 K. As an explanation we suggest a crossover from purely two-dimensional charge-carrier diffusion within the \{ReO2_2\}_{\infty} planes at high temperatures to three-dimensional diffusion at low temperatures in a disorder-enhanced electron-electron interaction scenario (Altshuler-Aronov correction). Furthermore, a linear positive magnetoresistance was found in the insulating regime, which is caused by spatial localization of itinerant electrons at some of the Re atoms, which formally adopt a 5d15d^1 electronic configuration. X-ray diffraction, IR- and ESR-studies, temperature dependent magnetization and specific heat measurements in various magnetic fields suggest that the electronic structure of poly-MTO can safely be approximated by a purely 2D conductor.Comment: 15 pages, 16 figures, 2 table

    Rotational properties of the O-type star population in the Tarantula region

    Full text link
    The 30 Doradus (30\,Dor) region in the Large Magellanic Cloud (also known as the Tarantula Nebula) is the nearest massive starburst region, containing the richest sample of massive stars in the Local Group. It is the best possible laboratory to investigate aspects of the formation and evolution of massive stars. Here, we focus on rotation which is a key parameter in the evolution of these objects. We establish the projected rotational velocity, vesiniv_{e}\sin i, distribution of an unprecedented sample of 216 radial velocity constant (ΔRV20kms1\rm{\Delta RV\, \leq\, 20 \,km s^{-1}}) O-type stars in 30\,Dor observed in the framework of the VLT-FLAMES Tarantula Survey (VFTS). The distribution of vesiniv_{e}\sin i shows a two-component structure: a peak around 80 kms1\rm{km s^{-1}} and a high-velocity tail extending up to \sim600 kms1\rm{km s^{-1}}. Around 75% of the sample has 0 vesini\leq\, v_{e}\sin i \leq 200 kms1\rm{km s^{-1}} with the other 25% distributed in the high-velocity tail. The presence of the low-velocity peak is consistent with that found in other studies of late-O and early-B stars. The high-velocity tail is compatible with expectations from binary interaction synthesis models and may be predominantly populated by post-binary interaction, spun-up, objects and mergers. This may have important implications for the nature of progenitors of long-duration gamma ray bursts.Comment: 4 pages, 1 figure. Conference proceedings article: Massive stars: from alpha to Omega, 10-14 June 2013, Rhodes, Greec

    Mid-to-Late M Dwarfs Lack Jupiter Analogs

    Full text link
    Cold Jovian planets play an important role in sculpting the dynamical environment in which inner terrestrial planets form. The core accretion model predicts that giant planets cannot form around low-mass M dwarfs, although this idea has been challenged by recent planet discoveries. Here, we investigate the occurrence rate of giant planets around low-mass (0.1-0.3M_\odot) M dwarfs. We monitor a volume-complete, inactive sample of 200 such stars located within 15 parsecs, collecting four high-resolution spectra of each M dwarf over six years and performing intensive follow-up monitoring of two candidate radial-velocity variables. We use TRES on the 1.5 m telescope at the Fred Lawrence Whipple Observatory and CHIRON on the Cerro Tololo Inter-American Observatory 1.5 m telescope for our primary campaign, and MAROON-X on Gemini North for high-precision follow-up. We place a 95%-confidence upper limit of 1.5% (68%-confidence limit of 0.57%) on the occurrence of MPM_{\rm P}sini>i > 1MJ_{\rm J} giant planets out to the water snow line and provide additional constraints on the giant planet population as a function of MPM_{\rm P}sinii and period. Beyond the snow line (100100 K <Teq<150< T_{\rm eq} < 150 K), we place 95%-confidence upper limits of 1.5%, 1.7%, and 4.4% (68%-confidence limits of 0.58%, 0.66%, and 1.7%) for 3MJ<MP_{\rm J} < M_{\rm P}sini<10i < 10MJ_{\rm J}, 0.8MJ<MP_{\rm J} < M_{\rm P}sini<3i < 3MJ_{\rm J}, and 0.3MJ<MP_{\rm J} < M_{\rm P}sini<0.8i < 0.8MJ_{\rm J} giant planets; i.e., Jupiter analogs are rare around low-mass M dwarfs. In contrast, surveys of Sun-like stars have found that their giant planets are most common at these Jupiter-like instellations.Comment: Accepted for publication in AJ; 19 pages, 5 figures, 2 table

    Quantum key distribution and 1 Gbit/s data encryption over a single fibre

    Full text link
    We perform quantum key distribution (QKD) in the presence of 4 classical channels in a C-band dense wavelength division multiplexing (DWDM) configuration using a commercial QKD system. The classical channels are used for key distillation and 1 Gbps encrypted communication, rendering the entire system independent from any other communication channel than a single dedicated fibre. We successfully distil secret keys over fibre spans of up to 50 km. The separation between quantum channel and nearest classical channel is only 200 GHz, while the classical channels are all separated by 100 GHz. In addition to that we discuss possible improvements and alternative configurations, for instance whether it is advantageous to choose the quantum channel at 1310 nm or to opt for a pure C-band configuration.Comment: 9 pages, 7 figure

    Rotational velocities of single and binary O-type stars in the Tarantula Nebula

    Full text link
    Rotation is a key parameter in the evolution of massive stars, affecting their evolution, chemical yields, ionizing photon budget, and final fate. We determined the projected rotational velocity, vesiniv_e\sin i, of \sim330 O-type objects, i.e. \sim210 spectroscopic single stars and \sim110 primaries in binary systems, in the Tarantula nebula or 30 Doradus (30\,Dor) region. The observations were taken using VLT/FLAMES and constitute the largest homogeneous dataset of multi-epoch spectroscopy of O-type stars currently available. The most distinctive feature of the vesiniv_e\sin i distributions of the presumed-single stars and primaries in 30 Dor is a low-velocity peak at around 100\,kms1\rm{km s^{-1}}. Stellar winds are not expected to have spun-down the bulk of the stars significantly since their arrival on the main sequence and therefore the peak in the single star sample is likely to represent the outcome of the formation process. Whereas the spin distribution of presumed-single stars shows a well developed tail of stars rotating more rapidly than 300\,kms1\rm{km s^{-1}}, the sample of primaries does not feature such a high-velocity tail. The tail of the presumed-single star distribution is attributed for the most part -- and could potentially be completely due -- to spun-up binary products that appear as single stars or that have merged. This would be consistent with the lack of such post-interaction products in the binary sample, that is expected to be dominated by pre-interaction systems. The peak in this distribution is broader and is shifted toward somewhat higher spin rates compared to the distribution of presumed-single stars. Systems displaying large radial velocity variations, typical for short period systems, appear mostly responsible for these differences.Comment: 6 pages, 3 figures, Proceedings IAU Symposium No. 307, 2014, 'New windows on massive stars: asteroseismology, interferometry, and spectropolarimetry
    corecore