763 research outputs found

    A changing-look AGN to be probed by X-ray polarimetry

    Full text link
    Active galactic nuclei (AGN) produce the highest intrinsic luminosities in the Universe from within a compact region. The central engine is thought to be powered by accretion onto a supermassive black hole. A fraction of this huge release of energy influences the evolution of the host galaxy, and in particular, star formation. Thus, AGN are key astronomical sources not only because they play an important role in the evolution of the Universe, but also because they constitute a laboratory for extreme physics. However, these objects are under the resolution limit of current telescopes. Polarimetry is a unique technique capable of providing us with information on physical AGN structures. The incoming new era of X-ray polarimetry will give us the opportunity to explore the geometry and physical processes taking place in the innermost regions of the accretion disc. Here we exploit this future powerful tool in the particular case of changing-look AGN, which are key for understanding the complexity of AGN physics.Comment: 9 pages, 1 figures, published by Galaxies under the special issue "The Bright Future of Astronomical X-ray Polarimetry

    IRAS 13197-1627 has them all: Compton-thin absorption, photo-ionized gas, thermal plasmas, and a broad Fe line

    Get PDF
    We report results from the XMM-Newton observation of IRAS 13197-1627, a luminous IR galaxy with a Seyfert 1.8 nucleus. The hard X-ray spectrum is steep and is absorbed by Compton-thin neutral gas. We detect an Fe emission line at 6.4 keV, consistent with transmission through the absorber. The most striking result of our spectral analysis is the detection of a dominant X-ray reflection component and broad Fe line from the inner accretion disc. The reflection-dominated hard X-ray spectrum is confirmed by the strong Compton hump seen in a previous BeppoSAX observation and could be the sign that most of the primary X-rays are radiated from a compact corona (or e.g. base of the jet) within a few gravitational radii from the black hole. We also detect a relatively strong absorption line at 6.81 keV which, if interpreted as Fe xxv resonant absorption intrinsic to the source, implies an outflow with velocity of about 5000 km/s. In the soft energy band, the high-resolution RGS and the CCD-resolution data show the presence of both photo-ionized gas and thermal plasma emission, the latter being most likely associated with a recent starburst of 15-20 solar masses per year.Comment: accepted for publication in MNRA

    Revealing the X-ray source in IRAS 13224-3809 through flux-dependent reverberation lags

    Get PDF
    IRAS 13224-3809 was observed in 2011 for 500 ks with the XMM-Newton observatory. We detect highly significant X-ray lags between soft (0.3 - 1 keV) and hard (1.2 - 5 keV) energies. The hard band lags the soft at low frequencies (i.e. hard lag), while the opposite (i.e. soft lag) is observed at high frequencies. In this paper, we study the lag during flaring and quiescent periods. We find that the frequency and absolute amplitude of the soft lag is different during high-flux and low-flux periods. During the low flux intervals, the soft lag is detected at higher frequencies and with smaller amplitude. Assuming that the soft lag is associated with the light travel time between primary and reprocessed emission, this behaviour suggests that the X-ray source is more compact during low-flux intervals, and irradiates smaller radii of the accretion disc (likely because of light bending effects). We continue with an investigation of the lag dependence on energy, and find that isolating the low-flux periods reveals a strong lag signature at the Fe K line energy, similar to results found using 1.3 Ms of data on another well known Narrow-Line Seyfert I galaxy, 1H0707-495.Comment: 6 pages, 8 figures, accepted for publication in MNRA

    The Cotton, Simon-Mars and Cotton-York Tensors in Stationary Spacetimes

    Get PDF
    The Cotton-York and Simon-Mars tensors in stationary vacuum spacetimes are studied in the language of the congruence approach pioneered by Hawking and Ellis. Their relationships with the Papapetrou field defined by the stationary Killing congruence and with a recent characterization of the Kerr spacetime in terms of the alignment between of the principal null directions of the Weyl tensor with those of the Papapetrou field are also investigated in this more transparent language.Comment: 14 pages latex(2e) iopart style, no figure

    Weighing the black holes in ultraluminous X-ray sources through timing

    Full text link
    We describe a new method to estimate the mass of black holes in Ultraluminous X-ray Sources (ULXs). The method is based on the recently discovered ``variability plane'', populated by Galactic stellar-mass black-hole candidates (BHCs) and supermassive active galactic nuclei (AGNs), in the parameter space defined by the black-hole mass, accretion rate and characteristic frequency. We apply this method to the two ULXs from which low-frequency quasi-periodic oscillations have been discovered, M82 X-1 and NGC 5408 X-1. For both sources we obtain a black-hole mass in the range 100~1300 Msun, thus providing evidence for these two sources to host an intermediate-mass black hole.Comment: 5 pages, 2 figures, Accepted by MNRA

    XMM-Newton study of the complex and variable spectrum of NGC 4051

    Full text link
    We study the X-ray spectral variability of the Narrow Line Seyfert 1 galaxy NGC 4051 as observed during two XMM-Newton observations. The data show evidence for a neutral and constant reflection component and for constant emission from photoionized gas, which are included in all spectral models. The nuclear emission can be modelled both in terms of a ``standard model'' (pivoting power law plus a black body component for the soft excess) and of a two--component one (power law plus ionized reflection from the accretion disc). The standard model results indicate that the soft excess does not follow the standard black body law. Moreover, although the spectral slope is correlated with flux, which is consistent with spectral pivoting, the hardest photon indexes are so flat as to require rather unusual scenarios. These problems can be solved in terms of the two-component model in which the soft excess is not thermal, but due to the ionized reflection component. The variability of the reflection component from the inner disc closely follows the predictions of the light bending model, suggesting that most of the primary nuclear emission is produced in the very innermost regions, only a few gravitational radii from the central black hole. (abridged)Comment: accepted for publication in MNRA

    Suzaku observations of Markarian 335: evidence for a distributed reflector

    Full text link
    We report on a 151 ks net exposure Suzaku observation of the Narrow Line Seyfert 1 galaxy Mrk 335. The 0.5-40 keV spectrum contains a broad Fe line, a strong soft excess below about 2 keV and a Compton hump around 20-30 keV. We find that a model consisting of a power law and two reflectors provides the best fit to the time-averaged spectrum. In this model, an ionized, heavily blurred, inner reflector produces most of the soft excess, while an almost neutral outer reflector (outside ~40 r_g) produces most of the Fe line emission. The spectral variability of the observation is characterised by spectral hardening at very low count rates. In terms of our power-law + two-reflector model it seems like this hardening is mainly caused by pivoting of the power law. The rms spectrum of the entire observation has the curved shape commonly observed in AGN, although the shape is significantly flatter when an interval which does not contain any deep dip in the lightcurve is considered. We also examine a previous 133 ks XMM-Newton observation of Mrk 335. We find that the XMM-Newton spectrum can be fitted with a similar two-reflector model as the Suzaku data and we confirm that the rms spectrum of the observation is flat. The flat rms spectra, as well as the high-energy data from the Suzaku PIN detector, disfavour an absorption origin for the soft excess in Mrk 335.Comment: 13 pages, 13 figures. Accepted for publication in MNRA

    X-ray Spectral and Variability Properties of Low-Mass AGN

    Get PDF
    We study the X-ray properties of a sample of 14 optically-selected low-mass AGN whose masses lie within the range 1E5 -2E6 M(solar) with XMM-Newton. Only six of these low-mass AGN have previously been studied with sufficient quality X-ray data, thus, we more than double the number of low-mass AGN observed by XMM-Newton with the addition of our sample. We analyze their X-ray spectral properties and variability and compare the results to their more massive counterparts. The presence of a soft X-ray excess is detectable in all five objects which were not background dominated at 2-3 keV. Combined with previous studies, this gives a total of 8 low-mass AGN with a soft excess. The low-mass AGN exhibit rapid, short-term variability (hundreds to thousands of seconds) as well as long-term variability (months to years). There is a well-known anti-correlation between black hole mass and variability amplitude (normalized excess variance). Comparing our sample of low-mass AGN with this relation we find that all of our sample lie below an extrapolation of the linear relation. Such a flattening of the relation at low masses (below about 1E6 M(solar)) is expected if the variability in all AGN follows the same shape power spectrum with a break frequency that is dependent on mass. Finally, we also found two objects that show significant absorption in their X-ray spectrum, indicative of type 2 objects, although they are classified as type 1 AGN based on optical spectra.Comment: 12 pages, 5 figures, 7 tables, accepted for publication in MNRA

    A Chandra view of the clumpy reflector at the heart of the Circinus galaxy

    Full text link
    We present a spectral and imaging analysis of the X-ray reflecting structure at the heart of the Circinus galaxy, investigating the innermost regions surrounding the central black hole. By studying an archival 200 ks Chandra ACIS-S observation, we are able to image the extended clumpy structure responsible for both cold reflection of the primary radiation and neutral iron Ka line emission. We measure an excess of the equivalent width of the iron Ka line which follows an axisymmetric geometry around the nucleus on a hundred pc scale. Spectra extracted from different regions confirm a scenario in which the dominant mechanism is the reflection of the nuclear radiation from Compton-thick gas. Significant differences in the equivalent width of the iron Ka emission line (up to a factor of 2) are found. It is argued that these differences are due to different scattering angles with respect to the line of sight rather than to different iron abundances.Comment: 6 pages, 4 figures, accepted for publication on MNRA
    corecore