657 research outputs found

    A changing-look AGN to be probed by X-ray polarimetry

    Full text link
    Active galactic nuclei (AGN) produce the highest intrinsic luminosities in the Universe from within a compact region. The central engine is thought to be powered by accretion onto a supermassive black hole. A fraction of this huge release of energy influences the evolution of the host galaxy, and in particular, star formation. Thus, AGN are key astronomical sources not only because they play an important role in the evolution of the Universe, but also because they constitute a laboratory for extreme physics. However, these objects are under the resolution limit of current telescopes. Polarimetry is a unique technique capable of providing us with information on physical AGN structures. The incoming new era of X-ray polarimetry will give us the opportunity to explore the geometry and physical processes taking place in the innermost regions of the accretion disc. Here we exploit this future powerful tool in the particular case of changing-look AGN, which are key for understanding the complexity of AGN physics.Comment: 9 pages, 1 figures, published by Galaxies under the special issue "The Bright Future of Astronomical X-ray Polarimetry

    The Cotton, Simon-Mars and Cotton-York Tensors in Stationary Spacetimes

    Get PDF
    The Cotton-York and Simon-Mars tensors in stationary vacuum spacetimes are studied in the language of the congruence approach pioneered by Hawking and Ellis. Their relationships with the Papapetrou field defined by the stationary Killing congruence and with a recent characterization of the Kerr spacetime in terms of the alignment between of the principal null directions of the Weyl tensor with those of the Papapetrou field are also investigated in this more transparent language.Comment: 14 pages latex(2e) iopart style, no figure

    A Chandra view of the clumpy reflector at the heart of the Circinus galaxy

    Full text link
    We present a spectral and imaging analysis of the X-ray reflecting structure at the heart of the Circinus galaxy, investigating the innermost regions surrounding the central black hole. By studying an archival 200 ks Chandra ACIS-S observation, we are able to image the extended clumpy structure responsible for both cold reflection of the primary radiation and neutral iron Ka line emission. We measure an excess of the equivalent width of the iron Ka line which follows an axisymmetric geometry around the nucleus on a hundred pc scale. Spectra extracted from different regions confirm a scenario in which the dominant mechanism is the reflection of the nuclear radiation from Compton-thick gas. Significant differences in the equivalent width of the iron Ka emission line (up to a factor of 2) are found. It is argued that these differences are due to different scattering angles with respect to the line of sight rather than to different iron abundances.Comment: 6 pages, 4 figures, accepted for publication on MNRA

    IRAS 13197-1627 has them all: Compton-thin absorption, photo-ionized gas, thermal plasmas, and a broad Fe line

    Get PDF
    We report results from the XMM-Newton observation of IRAS 13197-1627, a luminous IR galaxy with a Seyfert 1.8 nucleus. The hard X-ray spectrum is steep and is absorbed by Compton-thin neutral gas. We detect an Fe emission line at 6.4 keV, consistent with transmission through the absorber. The most striking result of our spectral analysis is the detection of a dominant X-ray reflection component and broad Fe line from the inner accretion disc. The reflection-dominated hard X-ray spectrum is confirmed by the strong Compton hump seen in a previous BeppoSAX observation and could be the sign that most of the primary X-rays are radiated from a compact corona (or e.g. base of the jet) within a few gravitational radii from the black hole. We also detect a relatively strong absorption line at 6.81 keV which, if interpreted as Fe xxv resonant absorption intrinsic to the source, implies an outflow with velocity of about 5000 km/s. In the soft energy band, the high-resolution RGS and the CCD-resolution data show the presence of both photo-ionized gas and thermal plasma emission, the latter being most likely associated with a recent starburst of 15-20 solar masses per year.Comment: accepted for publication in MNRA

    The absorption-dominated model for the X-ray spectra of type I active galaxies: MCG-6-30-15

    Full text link
    MCG-6-30-15 is the archetypal example of a type I active galaxy showing broad "red-wing" emission in its X-ray spectrum at energies below the 6.4 keV Fe K-alpha emission line and a continuum excess above 20 keV. Miller et al. (2008) showed that these spectral features could be caused by clumpy absorbing material, but Reynolds et al. (2009) have argued that the observed Fe K-alpha line luminosity is inconsistent with this explanation unless the global covering factor of the absorber(s) is very low. However, the Reynolds et al. calculation effectively considers the only source of opacity to be the Fe K bound-free transition and neglects the opacity at the line energy: correction to realistic opacity decreases the predicted line flux by a large factor. We also discuss the interpretation of the covering factor and the possible effect of occultation by the accretion disk. Finally, we consider a model for MCG-6-30-15 dominated by clumpy absorption, which is consistent with global covering factor 0.45, although models that include the effects of Compton scattering are required to reach a full understanding. Variations in covering fraction may dominate the observed X-ray spectral variability.Comment: Accepted for publication in MNRAS letter

    Relativistic reflection in the average X-ray spectrum of AGN in the V\'eron-Cetty & V\'eron catalogue

    Get PDF
    The X-ray spectra of active galactic nuclei (AGN) unveil properties of matter around the super massive black hole (SMBH). We investigate the X-ray spectra of AGN focusing on Compton reflection and fluorescence, important processes of interaction between primary radiation and circum-nuclear material. Unresolved emission lines (most notably the Fe line) in the X-ray spectra of AGN indicate that this material is located far away from the SMBH. Contributions from the inner accretion disk, affected by relativistic effects, have also been detected in several cases. We studied the average X-ray spectrum of a sample of 263 X-ray unabsorbed AGN that yield 419023 counts in the 2-12 keV rest-frame band distributed among 388 XMM-Newton spectra. We fitted the average spectrum using a (basically) unabsorbed power law (primary radiation). From second model that represents the interaction of the primary radiation with matter located far away from the SMBH, we found that it was very significantly detected. Finally, we added a contribution from interaction with neutral material in the accretion disk close to the central SMBH, which is therefore smeared by relativistic effects, which improved the fit at 6 sigma. The reflection factors are 0.65 for the accretion disk and 0.25 for the torus. Replacing the neutral disk-reflection with low-ionisation disk reflection, also relativistically smeared, fits the data equally well, suggesting that we do not find evidence for a significant ionisation of the accretion disk. We detect distant neutral reflection in the average spectrum of unabsorbed AGN with z=0.8. Adding the disk-reflection component associated with a relativistic Fe line improves the data description at 6 sigma confidence level, suggesting that both reflection components are present. The disk-reflection component accounts for about 70 % of the total reflected flux.Comment: Accepted by A&A. 10 pages, 7 figure

    Revealing the X-ray source in IRAS 13224-3809 through flux-dependent reverberation lags

    Get PDF
    IRAS 13224-3809 was observed in 2011 for 500 ks with the XMM-Newton observatory. We detect highly significant X-ray lags between soft (0.3 - 1 keV) and hard (1.2 - 5 keV) energies. The hard band lags the soft at low frequencies (i.e. hard lag), while the opposite (i.e. soft lag) is observed at high frequencies. In this paper, we study the lag during flaring and quiescent periods. We find that the frequency and absolute amplitude of the soft lag is different during high-flux and low-flux periods. During the low flux intervals, the soft lag is detected at higher frequencies and with smaller amplitude. Assuming that the soft lag is associated with the light travel time between primary and reprocessed emission, this behaviour suggests that the X-ray source is more compact during low-flux intervals, and irradiates smaller radii of the accretion disc (likely because of light bending effects). We continue with an investigation of the lag dependence on energy, and find that isolating the low-flux periods reveals a strong lag signature at the Fe K line energy, similar to results found using 1.3 Ms of data on another well known Narrow-Line Seyfert I galaxy, 1H0707-495.Comment: 6 pages, 8 figures, accepted for publication in MNRA

    Weighing the black holes in ultraluminous X-ray sources through timing

    Full text link
    We describe a new method to estimate the mass of black holes in Ultraluminous X-ray Sources (ULXs). The method is based on the recently discovered ``variability plane'', populated by Galactic stellar-mass black-hole candidates (BHCs) and supermassive active galactic nuclei (AGNs), in the parameter space defined by the black-hole mass, accretion rate and characteristic frequency. We apply this method to the two ULXs from which low-frequency quasi-periodic oscillations have been discovered, M82 X-1 and NGC 5408 X-1. For both sources we obtain a black-hole mass in the range 100~1300 Msun, thus providing evidence for these two sources to host an intermediate-mass black hole.Comment: 5 pages, 2 figures, Accepted by MNRA
    corecore