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A B S T R A C T

IR A S  1 3 2 2 4 —3 8 0 9  w a s  o b s e rv e d  in  2011  fo r  5 0 0  k s  w ith  th e  X M M -N e w to n  o b se rv a to ry . W e 

d e te c t h ig h ly  s ig n if ic a n t X -ra y  la g s  b e tw e e n  so ft (0 .3 -1  k e V )  a n d  h a r d  ( 1 .2 -5  k e V ) e n e rg ie s . 

T h e  h a rd  b a n d  la g s  th e  so ft a t lo w  f re q u e n c ie s  (i.e . h a rd  lag ), w h ile  th e  o p p o s ite  (i.e . so f t lag ) 

is o b se rv e d  a t h ig h  f re q u e n c ie s .  In  th is  p a p e r , w e  s tu d y  th e  lag  d u r in g  f la r in g  a n d  q u ie s c e n t 

p e r io d s . W e fin d  th a t th e  f re q u e n c y  a n d  a b so lu te  a m p li tu d e  o f  th e  so ft lag  a re  d if fe re n t  d u rin g  

h ig h -f lu x  a n d  lo w -flu x  p e r io d s . D u r in g  th e  lo w -flu x  in te rv a ls , th e  so ft la g  is d e te c te d  a t  h ig h e r  
f re q u e n c ie s  a n d  w ith  sm a lle r  a m p litu d e . A s su m in g  th a t  th e  so ft lag  is a s s o c ia te d  w ith  the  

l ig h t t ra v e l tim e  b e tw e e n  p r im a ry  a n d  r e p ro c e s s e d  e m is s io n , th is  b e h a v io u r  su g g e s ts  th a t  th e  

X -ra y  so u rc e  is  m o re  c o m p a c t  d u r in g  lo w -flu x  in te rv a ls , a n d  ir ra d ia te s  s m a lle r  ra d ii  o f  th e  

a c c re t io n  d is c  ( l ik e ly  b e c a u se  o f  l ig h t b e n d in g  e ffe c ts ) . W e c o n tin u e  w ith  a n  in v e s tig a tio n  o f  

th e  lag  d e p e n d e n c e  o n  e n e rg y , a n d  fin d  th a t iso la t in g  th e  lo w -flu x  p e r io d s  re v e a ls  a  s tro n g  lag  

s ig n a tu re  a t th e  F e  Kcr lin e  e n e rg y , s im ila r  to  re s u lts  fo u n d  u s in g  1.3 M s  o f  d a ta  o n  a n o th e r  

w e ll-k n o w n  n a r ro w - lin e  S e y fe rt  I g a la x y , 1 H 0 7 0 7 —4 9 5 .

K e y  w o r d s :  b la c k  h o le  p h y s i c s - g a la x ie s :  a c t i v e - X - r a y s :  g a la x ie s .

1967). From  observations o f fast variability in AGN, w e know that 
the  corona m ust be com pact, likely w ith in  ~ 1 0 0 r g. Recent obser­
vations from  the  X -ray variability seen from  m icrolensed quasars 
also show that the corona is com pact to w ith in  10 r„ o r less (Chartas 
et al. 2009, 2012; Dai et al. 2010).

Variability studies o f  black  hole b inaries led to the discovery of 
the  X -ray lag, w here usually hard photons lag behind soft photons 
(e.g. M iyam oto et al. 1988; N ow ak & Vaughan 1996; N ow ak et al. 
1999). This effect w as also later observed in AGN (Papadakis, 
N andra & Kazanas 2001; M cH ardy et al. 2004). T he origin o f  the 
hard lag is still not well understood, though in the  prevailing m odel, 
the  m ultiplicative propagation effects o f  fluctuations in the  accretion 
flow m odulate regions em itting soft photons before  those em itting 
hard photons (Kotov, Churazov & G ilfanov 2001; A revalo & Uttley 
2006).

Recent developm ents in X -ray variability have revealed a new 
type o f  lag, w here soft photons lag behind hard photons. T his lag, 
interpreted as a reverberation lag, offers a  new perspective to study 
the  X -ray em itting region in AGN. U nderstanding the  phase lag be­
tw een light curves o f  different energy bands gives us an orthogonal 
approach to testing physical m odels that are  often degenerate in the 
tim e-integrated energy spectrum .

Reverberation lags w ere first discovered in the narrow -line 
Seyfert 1 galaxy, 1H 0707—495 (Fabian et al. 2009). S ince then, 
lags have been detected  m ore than  a dozen o ther Seyfert galaxies
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1 I N T R O D U C T I O N

The X -ray em itting region in accreting b lack  hole system s is not 
well understood. G enerally, it is agreed that the  angular m om entum  
o f accreting gas on to a b lack  hole form s an optically  thick, geo ­
m etrically thin accretion disc that radiates as a series o f  blackbody 
com ponents (Shakura & Sunyaev 1973). For superm assive black 
holes, this therm al em ission  peaks in the UV. Som e o f the  therm al 
disc photons are  then  inverse C om pton upscattered to X -ray ener­
gies by m ildly relativistic electrons in a hot cloud, called the  corona 
(H aardt & M araschi 1991, 1993). W hile the X -ray em ission m ech­
anism  is relatively w ell understood, the geom etry  o f  the  corona 
where the X -rays are  produced is an area o f  active research. In this 
paper, w e probe the geom etry  o f  the corona through an analysis o f 
the X -ray reverberation lags.

X -ray variability studies have been influential in starting to under­
stand the size o f  the  em itting  region. AGN are know n to be  extrem ely 
variable in the X -ray band, com m only doubling in am plitude on 
tim e-scales o f  less than  1 d fo r radio-quiet sources (M cH ardy 1988). 
Substantial variability occurs on  tim e-scales o f the  light crossing 
tim e o f the source (or greater), and therefore w e can calculate an 
upper lim it on the  size o f  the  em itting region, R < c8t (Terrell
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(D e M arco et al. 2011, 2012; E m m anoulopoulos, M cH ardy & 
Papadakis 2 0 11; Zoghbi et al. 2012), including m ost recently  IRAS 
13224- 3 809 (Fabian et al. 2012b). R everberation lags have also 
been observed o f the o rder o f  m illiseconds or less in b lack  hole 
b inary  G X  3 3 9 - 4  (U ttley et al. 20 1 1 ).

T he soft lags can be  understood w ith the  standard reflection sce­
nario (G uilbert & Rees 1988; L igh tman & W hite 1988). In this 
m odel, the  bulk o f the  X -ray  continuum  is produced in the corona. 
Som e continuum  photons fall towards the  surface o f  the  accretion 
d isc , are  absorbed by photoelectric absorption and are reprocessed 
into an X -ray reflection spectrum  com prised o f a reflection contin­
uum  and em ission lines (e.g. Ross & Fabian 2005). W hen reflection 
arises in the  accretion d isc , the w hole reflection spectrum  is blurred 
due to D oppler and o ther relativ istic  effects close to the  black hole. 
Soft lags, w here the  d irect continuum  variations lead those in the 
soft-b and reflection, are then  interpreted as the additional light travel 
tim e taken by the  reflected paths betw een the corona and the  inner 
accretion disc.

IRAS 13224- 3 809 (z  =  0 .066) is  one o f the m ost X -ray vari­
ab le  Seyfer t 1 galaxies know n (Boiler, Brandt & F ink  1996), and 
therefore is a useful source w ith w hich to probe the  environm ents 
o f  the innerm ost regions (fo r IRAS catalogue see H elou & W alker 
1988). It w as first observed w ith X M M -N ew ton  in 2002 for 64 ks 
(Bo ller et al. 2003; G allo  e t  al. 2004; Ponti et al. 2010), and m ost 
recently, fo r 500 ks, w hich  led to a significant detection o f the  soft 
lag (Fabian et al. 2012b). In this paper, w e follow  up that recent 
w ork w ith an analysis o f  the  soft lags o f IRAS 132 2 4 - 3 809 in the 
low- and high-flux states.

2 O B S E R V A T IO N S  A N D  D A T A  R E D U C T IO N

T he X M M -N ew to n  sa tellite  (Jansen et al. 2001) observed IRAS 
1 3 2 2 4 -3 8 0 9  for 500 ks over four orbits from  2 0 11 July 19 to 
2 0 11 July 29  (Obs. ID s 0673580101, 0673580201, 0673580301, 
0673580401). For this analysis o f  the  reverberation lags, w e focus 
on  the high -time-reso lu tion data from  the  E P IC -pn cam era (Striider 
et al. 2001). T he first observation was taken in a full window im aging 
m ode, and next three in a large w indow im aging mode. A ll o f  the 
data  w ere reduced in the  sam e way, using the  X M M -N ew to n  Science 
A nalysis System  ( s a s  v . 11.0.0) and the  new est calibration files. The 
details o f  the data  reduction  are  explained in Fabian et al. (2012b).

T he data w ere  cleaned fo r high background flares, w hich resulted 
in a total exposure tim e o f  ~ 3 0 0  ks. The data  w ere selected w ith the 
condition p a t t e r n  <  4. Pile-up effects w ere  not significant in any of 
the  observations.

T he source light curve w as extracted from  circu lar regions o f 
radius 35 arcsec, w hich w ere  centred on the m axim um  source em is­
sion. T he background light curves w ere chosen from  a circular 
region o f  the sam e size, and w ere the sam e d istance to the readout 
node as the source region. T he background-subtracted  light curves 
w ere  produced using the tool e p i c l c c o r r . The light curves ranged 
in length from  83 to 124 k s w ith 10 s bins.

3 R E S U L T S

Figure 1. Lag-frequency spectrum for the 500 ks observation. The lag is 
calculated between the soft energy band (0.3-1 keV) and the hard band 
(1.2-5 keV). The most negative lag (at v — 4.1 x 10-4 Hz) is —92 ± 3 1  s.

sion, respectively (Ponti et al. 2010; Fabian  et al. 2012b). The 
Fourier transform  o f a light curve con tains an am plitude and com ­
plex phase, such that the  Fourier transform  o f  soft light curve 
s(t) is  w ritten as S  =  |5 |e '^ s. The cross product o f  the  soft and 
hard band Fourier transform s, H * S  =  | / / | | 5 | e i<(fti_̂ h), provides the 
phase difference betw een the two energy bands. T his phase differ­
ence is converted back  into a frequency-dependent tim e lag, w here 
r ( / )  =  (0 S — <ph) / 2 n f .  G iven th is defin ition  for the lag, a nega­
tive am plitude lag m eans that the soft band lags behind the hard 
band, w hile the  positive am plitude lag shows the hard band lag­
ging. We take note o f  that the  phase lag is defined over the interval 
(—71, 7t), w hich causes phase w rapping a t high frequencies (Now ak 
& Vaughan 1996).

Fig. 1 shows frequency-dependent tim e lag betw een the  soft and 
hard bands, from  Fabian et al. (2012b). A t low frequencies, w e find 
a large positive lag w here the hard flux lags behind the soft flux by 
hundreds o f  seconds. A t h igher frequencies, v  ~  [2 -10] x  10~4 Hz, 
there is a negative lag w here the soft flux lags the  hard by ~  100 s. 
A bove ~ 1 .5  x  10~3 Hz, the  signal becom es dom inated by Poisson

3.2 Flux-resolved analysis

IRAS 1 3 2 2 4 -3 8 0 9  is a highly variable source that exhibited distinct 
flaring and qu iescent periods during the 500  ks observation. In this 
section, w e exam ine the  lags from  low - and high-flux intervals. 
Fig. 2 shows light curves from  the fo u r orbits. T he low-flux sam ple 
is shown in red, and the high flux is show n in green. W e chose 
light-curve segm ents that w ere  long in o rder to obtain inform ation 
at low frequencies. The pow er spectral density  confirm s that up to 
1.5 x  10-3 H z, w e are not in a Poisson noise dom inated frequency 
regim e fo r both the low- and high-flux sam ples.

3.1 Lag versus frequency

T he lag is com puted in the  usual w ay follow ing the  form ulae de­
scribed in N ow ak et al. (1999). The frequency-dependent lag is 
calculated  betw een light curves in the  soft (0 .3-1 keV ) and hard 
(1 .2 -5  keV ) energy bands, w hich  are dom inated by the soft ex­
cess (likely disc reflection) and the  prim ary pow er-law -like em is-

3.2.1 The lag-frequency  spectrum

Fig. 3 show s the lag versus frequency for the  h igh- and low-flux 
segm ents. The lag is com puted in the  sam e way as in Section 3.1, 
betw een the energy bands o f 0.3-1  and 1 .2-5  keV. Focusing on the 
high-flux points in green, w e see that the  soft lag occurs at lower 
frequencies than found from  the total light-curve sam ple, in Fig. 1.
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Figure 2. Hard band (1.2-5 keV) and soft band (0.3-1 keV) light curves for the four orbits in 500 s bins. The green regions denote high-flux segments and 
the red regions denote low-flux segments. These high- and low-flux segments will be used for the lag analysis shown in Fig. 3.
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Figure 3. Lag-frequency spectrum for the low-flux (red) and high-flux 
(green) segments shown in Fig. 2. The most negative lag for the high-flux 
intervals is —660 ±  280 s at v =  1.8 x 10-4 Hz, and the most negative lag 
for the low flux is higher: —230 ±  31 s at v =  7 x 10-4 Hz. Again, note that 
the most negative lag for the total observation (Fig. 1) occurs at v — 4.1 x 
10"4 Hz.

This means that the variability associated w ith the soft lag occurs on 
longer tim e-scales during th e  flaring period. A lso, the am plitude o f 
the lag is greater. Now looking at the red low flux points, w e see that 
the soft lag occurs at h ig h er frequencies than the total, indicating 
the source variability is  occurring  on shorter tim e-scales.

As a check, w e com pute flux-dependent lags using orb it 4 alone, 
which shows distinct low- and  high-flux segm ents (as designated in 
green and red in the rightm ost panel o f  Fig. 2). T he lag is com puted 
for these tw o sets o f  continuous light curves, and shown in Fig. 4. 
We find that fo r continuous segm ents (i.e. for one realization o f 
som e underlying process), the sam e flux-dependent behaviour o f  
the lag is  clear, ju s t w ith a low er signal-to-noise ratio. The analysis 
that follow s has been perform ed with low- and high-flux segm ents 
from  the total 500 ks observation.

3.2.2 The la g -en erg y  spectrum

We also exam ine how the flux-dependent lag evolves w ith energy 
at the  frequencies o f  the negative lag (i.e. |5 .8 -1 0 .5 ] x  10-4  Hz 
for the low flux, and [1 .4 -2 .8] x  10-4  H z for high fluxes). In this 
analysis, w e m easure the tim e lag o f light curves in relatively narrow 
energy bins w ith respect to  the  light curve o f a broader reference

Figure 4. Lag-frequency spectrum of the fourth orbit alone, for the low-flux 
(red) and high-flux (green) segments shown in Fig. 2. The most negative 
lag for the high-flux interval is —350 ±  130 s at v — 2.2 x 10-4 Hz, 
and the most negative lag for the low flux is higher: —118 ±  42 s at 
u =  6.5 x 10-4 Hz.

band from  0 .3 -0 .8  keV (see Kara et al. 2013 fo r further details). We 
use the  convention that a positive lag m eans that the light curve in 
that energy bin  lags behind the reference band , w hile a negative lag 
m eans that the light curve in that energy b in  leads the reference.

Fig. 5 shows the high-frequency lag -en erg y  spectrum  for the 
low- and high-flux segm ents. The low-flux segm ents show a much 
c learer signal than the  high flux, likely due  to poor statistics and 
low er coherence in the high flux. The general trends o f  the two 
lag -energy  spectra are similar, except that the am plitude o f the lag 
betw een 1 and 4 keV  is greater for the h igh  flux. The low-flux la g -  
energy spectrum  shows a c lear peak at ~ 6 .5  keV, the  energy o f the 
Fe K a  line. T here does not appear to b e  a corresponding peak at 
high fluxes, but as the e rro r bars are so large, it cannot be ruled out.

3.2.3 The tim e-in tegrated  energy spectrum

W e com plem ent the  lag analysis p resented  above w ith a brief inves­
tigation  o f  the spectral properties in the  low- and high-flux segm ents. 
W e applied the best-fitting spectral m odel from  Fabian et al. (2 0 12b) 
to the low- and high-flux spectra, freezing  all physical param eters 
that a re  not likely to change betw een states (i.e. inclination, galac­
tic absorption, Fe abundance). T he resu lts are shown in panels (a) 
and (b) o f  Fig. 6 for the  h igh- and low-flux segm ents, respectively.
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Figure 5. Lag-energy spectra for the low-flux (red) and high-flux (green) 
intervals, showing the energy dependence of the lag for the frequencies of 
the soft lag (u =  [5.8-10.5] x 10-4 Hz for the low flux, and v — [1.'4-2.8] x 
10-4 Hz for the high flux).

F or clarity, only the pow er-law  and total reflection com ponents are 
plotted. The high-flux spectrum  is dom inated by the pow er law, 
w hile  the low-flux spectrum  shows a g reater contribution from  re­
flection.

Panel (c) o f  Fig. 6 show s the power-law and reflection com po­
nents o f the low- and high-flux segm ents overplotted. We notice that 
the  power-law flux increases by  an o rder o f  m agnitude betw een the 
low- and high-flux spectra, but the  reflection com ponent rem ains 
nearly unchanged, especially  at the  energy o f the  Fe K line.

In  Kara et al. (2013), w e use  M onte C arlo sim ulations to show that 
d ilution will have an effect on the  m easurem ent o f the lag. The lag is 
m easured betw een a soft energy band and a hard band, w here, to first 
order, w e approxim ate the soft band as reflection and the hard band 
as pow er law. However, w e  understand that there is ‘contam ination’ 
in each band caused by th e  o ther varying com ponents. A s these 
com ponents have different intrinsic tim e delays, the  net m easured 
lag will be  som e w eighted  average o f all the com ponents. In the 
ideal case, w here there is no contam ination, the intrinsic lag will 
be  the  m easured lag. A t the  o ther extrem e, w here there are equal 
parts o f  reflection and pow er law in each band, the m easured lag 
w ill be zero. Furtherm ore, contam ination by  a non-varying or an 
uncorrelated com ponent w ill not affect the m easurem ent o f  the lag, 
as the  lag is m easured betw een  coherent signals.

It is  c lear from  the spectra in Fig. 6  that w e need to account 
fo r d ilution in the  m easurem ent o f the  lag. Here w e quantify  the 
am ount o f  dilution by m easuring the reflection fraction in the hard 
and soft bands. For exam ple, in the  low-flux spectrum , the soft 
band is  com posed o f  80 per cent reflection, but also the hard band 
is com posed o f  45 per cent reflection. T he net am ount o f  reflection 
betw een the  tw o bands is therefore 35 per cent, m eaning that the 
m easured lag is only 35 per cent o f  the  intrinsic lag. S im ilarly  
fo r the high-flux spectrum , the  soft band is com posed o f 40 per 
cent reflection, w hile the hard band is contam inated by 10 per 
cent reflection. A gain  the  net am ount o f  reflection is 30 per cent, 
m eaning that the  m easured lag in the h igh  flux is only 30 per cent 
o f  the  intrinsic lag. We conclude then  that the effect o f  d ilution is 
nearly the sam e for both the high- and low-flux lags, and therefore 
w e can be confident that the intrinsic am plitude o f  the lag in the 
high-flux sam ple is indeed greater than th e  lag in the  low flux.

4 D I S C U S S I O N S

(i) A s shown in Fabian e ta l. (2012b), IR A S 13224—3809 exhibits 
frequency-dependent lags w here the hard band lags the  soft band at 
low frequencies below  ~ 2  x  10~4 Hz, w hile  the  soft band lags the 
hard band at h igher frequencies (Fig. 1).

(ii) In this w ork, w e take a step fu rther and study the flux depen­
dence o f the observed lags. We find that the soft lag has a larger 
am plitude and occurs on longer tim e-scales during high-flux states 
than during low-flux states (Fig. 3).

(iii) A ccording to the  lag interpretation presented by  Fabian et al. 
(2009), Zoghbi et al. (2010) and others, so ft lags are  reverberation 
lags due to the light travel tim e betw een the  prim ary source and the 
inner accretion disc. Therefore, the low-flux state (sm aller reverber­
ation lags at shorter tim e-scales) refers to a com pact em itting  source 
that is c loser to the  central b lack  hole, w h ile  the high-flux state (big­
ger lag at longer tim e-scales) refers to a n  extended em itting  region 
further from  the  black hole. M oreover, w e  point out that a m ore com ­
pact corona will inevitably irradiate sm alle r disc radii because o f 
light bending (e.g. M iniutti & Fabian 2004), thus providing a qual­
itatively self-consistent explanation fo r both the h igher frequency 
and sm aller am plitude o f the soft lags during  low-flux states.

T he spatial extent o f  the  corona can be  interpreted as an increase 
in the height o f  the  corona above the d isc , o r som e radial expansion 
o f the corona, o r  som e com bination o f  th e  two. A n increase in the 
am plitude o f the  lag is  easily  understood for a vertically  extended 
corona as the  light travel betw een the  corona and the  disc increases. 
For a radially  extended source, one can  im agine that the  corona

Figure 6. Energy spectra for the high- and low-flux samples in panels (a) and (b), respectively. For clarity, only the power-law and reflection components are 
plotted. Panel (c) shows the power law and reflection for the low- and high-flux spectra overplotted.
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irradiates a larger portion o f  the  disc, causing a longer average lag. 
Som e com plexities m ay arise  with th is interpretation because the 
e m issivity decreases g reatly  w ith larger disc radius; however, we 
cannot rule out a radially extended corona from  the  observations 
presented here. Both the  lag am plitude and the frequency change 
by a factor o f  ~ 3 .5 betw een low and high fluxes, w hich could imply 
that the  corona extends 3.5 tim es further away in the high state than 
in the  low.

T he energy spectra o f  th e  low- and high-flux segm ents (Fig. 6) 
agree w ith the interpretation  o f an extended corona. T he low-flux 
sam ple shows a stronger contribution from  reflection. T his is ex­
pected from  a m ore com pact corona, w here light bending effects 
close to the  central black  ho le  cause a g reater fraction o f contin­
uum em ission to be  directed towards the disc. Spectral m odelling 
o f 1H0707 - 4 95 during a low-flux state  in 2 0 11 also shows a more 
com pact corona (Fabian et al. 2012a).

T he spectral difference betw een low- and high-flux sam ples ap­
pears to be caused by a change in power-law flux, and not from  a 
change in reflection. L o ng-time-scale variations in continuum  that 
are decoupled from  reflection have also been observed in M CG- 
6-30-15 (Vaughan & Fabian  2004; M iniutti e t al. 2007), and ex­
plained w ithin the fram ew ork o f strong light bending. We note that 
w hile the reflection spectrum  appears unchanged on these long tim e- 
scales, the  frequency-resolved covariance spectrum  (as show n for 
1H0707 - 4 95 in K ara et al. 2013) does show that reflection varies 
with the continuum  on short tim e-scales.

4.1 Comparison with 1H0707 - 495

The lag analysis o f  IRAS 132 2 4 - 3 809 shows striking sim ilarities 
to the results found fo r 1 H 0 7 0 7 -4 9 5  using 1.3 M s o f data  (Kara 
et al. 2013). Fig. 7 shows the  la g -f requency spectrum  o f IRAS 
13224- 3 809 overplotted w ith  1H0707 - 4 95 (note different y -axis 
scales). W e find that IRAS 13224- 3 809 shows the sam e general 
positive-to-negative trend as seen in 1H 0707- 4 95, ju s t w ith a larger 
am plitude negative lag that occurs at low er frequencies. The nega­
tive lag in 1H0707- 4 95 is m easured  to be —31.9 ±  4.2 s at 1.33 x 
10-3  Hz, w hile the negative lag in IRAS 13224—3809 is a fac­
tor o f  ~ 3 .3 3  tim es m ore ( —92 ± 3 1  s) at a frequency that is ~3 .2 5  
tim es low er (4.1 x  10~4 Hz). Both the lag and the frequency change 
roughly by  a factor o f  3.3. A ssum ing a sim ple m ass scaling rela-

Figure 7. The lag-frequency spectrum for the total observation (same as 
Fig. 1) in red, overplotted with the lag-frequency spectrum of 1H0707—495 
from Kara et al. (2013) in blue.

Figure 8. High-frequency lag-energy spectrum for the low-flux segments 
in IRAS 13224—3809 (red), overplotted with the high-frequency lag-energy 
spectrum of 1H0707-495 (v =  [0.98-2.98] x 10"3 Hz) in blue.

tionship, this im plies that IRAS 13224—3809 is 3.3 tim es more 
m assive that 1H 0707—495. A ccording to the m ass scaling trends in 
De M arco et al. (2012), the lags in IRAS 13224—3809 are  consis­
ten t w ith a black  hole m ass o f  107 M q . In this work, however, we 
use IRAS 13224—3809 to show that there is som e flux dependence 
to the  reverberation lag. T herefore, w e should  take som e caution 
in predicting the m ass o f the central b lack  hole from  the am plitude 
and frequency o f  the lag. W hile observations used to m easure re­
verberation lags are relatively long, it is possib le to sam ple some 
in trinsically  h igh- o r low-flux state. This w ould introduce system - 
atics to the sim ple  m ass scaling relationship.

W e com pare the low-flux lag-energy  spectrum  o f IRAS 
13224—3809 w ith the lag-energy  spectrum  o f  1H 0707—495 
(Fig. 8). T he shapes o f  the spectra fo r these  two different sources 
are strikingly sim ilar, but the am plitude o f  the lags is g reater for the 
low-flux segm ents in IRAS 13224—3809. The peak at ~ 6  keV and 
the  d ip  at 3^1 keV are clearly  present in bo th  data sets. Being able 
to isolate the  low-flux segm ents o f  IRAS 13224—3809 has allowed 
us to clearly  uncover the reverberation signal, as w as only possi­
b le  w ith 1.3 M s o f data w ith 1 H 0 7 0 7 -4 9 5 . 1 H 0 7 0 7 -4 9 5  does not 
have such distinct low-flux segm ents as IR A S 13224—3809, and so 
a sim ilar flux-resolved analysis was not possib le  fo r this source.

T he h igh-frequency lag-energy  spec tra  o f  IRAS 13224—3809 
and 1H 0707—495 (Figs 6 and 8) a re  consistent w ith a reflection 
m odel, w here the negative lags a re  associated  w ith the light travel 
tim e betw een the  continuum  em itting corona and the  accretion disc. 
T he lag-energy  spectrum  shows that the  1 -4  keV band (power law 
dom inated) leads the 0 .3 -0 .8  keV  reference band (w here reflection 
is appreciable). S im ilar to 1H 0707—49 5 , w e see a d istinct peak 
at ~ 6  keV, the  rest-fram e energy o f  the  Fe K line, and a dip at 
3^1 keV, w hich has been interpreted as a signature from  the red 
w ing o f the Fe K line, originating from  the innerm ost radius. This 
interpretation is d iscussed  further in K ara  et al. (2013), w here we 
m odel the h igh-frequency lag -energy  spectrum  o f  1H 0707—495.

5 C O N C L U S I O N S

L ooking at the flux-resolved reverberation  lags reveals new observa­
tional constraints that can help us d istinguish betw een the physical 
nature o f  the low- and high-flux states. W e learn that flares are likely 
connected  to the  expansion o f  the corona ou t vertically and possibly
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radially, too, and that w hen  the source is in quiescence, the corona 
rem ains com pact and c lose  to the  central region.
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