81 research outputs found

    A new algorithm for sea ice melt pond fraction estimation from high-resolution optical satellite imagery

    Get PDF
    doi: 10.1029/2019JC015716Abstract Melt ponds occupy a large fraction of the Arctic sea ice surface during spring and summer. The fraction and distribution of melt ponds have considerable impacts on Arctic climate and ecosystem by reducing the albedo. There is an urgency to obtain improved accuracy and a wider coverage of melt pond fraction (MPF) data for studying these processes. MPF information has generally been acquired from optical imagery. Conventional MPF algorithms based on high-resolution optical sensors have treated melt ponds as features with constant reflectance; however, the spectral reflectance of ponds can vary greatly, even at a local scale. Here we use Sentinel-2 imagery to demonstrate those previous algorithms assuming fixed melt pond-reflectance greatly underestimate MPF. We propose a new algorithm (?LinearPolar?) based on the polar coordinate transformation that treats melt ponds as variable-reflectance features and calculates MPF across the vector between melt pond and bare ice axes. The angular coordinate ? of the polar coordinate system, which is only associated with pond fraction rather than reflectance, is used to determinate MPF. By comparing the new algorithm and previous methods with IceBridge optical imagery data, across a variety of Sentinel-2 images with melt ponds at various stages of development, we show that the RMSE value of the LinearPolar algorithm is about 30% lower than for the previous algorithms. Moreover, based on a sensitivity test, the new algorithm is also less sensitive to the subjective threshold for melt pond reflectance than previous algorithms.Peer reviewe

    Evolution of population with sexual and asexual reproduction in changing environment

    Full text link
    Using a lattice model based on Monte Carlo simulations, we study the role of the reproduction pattern on the fate of an evolving population. Each individual is under the selection pressure from the environment and random mutations. The habitat ("climate") is changing periodically. Evolutions of populations following two reproduction patterns are compared, asexual and sexual. We show, via Monte Carlo simulations, that sexual reproduction by keeping more diversified populations gives them better chances to adapt themselves to the changing environment. However, in order to obtain a greater chance to mate, the birth rate should be high. In the case of low birth rate and high mutation probability there is a preference for the asexual reproduction.Comment: 11 pages including figs., for Int. J. Mod. Phys. C 15, issue 2 (2004

    OccuQuest: Mitigating Occupational Bias for Inclusive Large Language Models

    Full text link
    The emergence of large language models (LLMs) has revolutionized natural language processing tasks. However, existing instruction-tuning datasets suffer from occupational bias: the majority of data relates to only a few occupations, which hampers the instruction-tuned LLMs to generate helpful responses to professional queries from practitioners in specific fields. To mitigate this issue and promote occupation-inclusive LLMs, we create an instruction-tuning dataset named \emph{OccuQuest}, which contains 110,000+ prompt-completion pairs and 30,000+ dialogues covering over 1,000 occupations in 26 occupational categories. We systematically request ChatGPT, organizing queries hierarchically based on Occupation, Responsibility, Topic, and Question, to ensure a comprehensive coverage of occupational specialty inquiries. By comparing with three commonly used datasets (Dolly, ShareGPT, and WizardLM), we observe that OccuQuest exhibits a more balanced distribution across occupations. Furthermore, we assemble three test sets for comprehensive evaluation, an occu-test set covering 25 occupational categories, an estate set focusing on real estate, and an occu-quora set containing real-world questions from Quora. We then fine-tune LLaMA on OccuQuest to obtain OccuLLaMA, which significantly outperforms state-of-the-art LLaMA variants (Vicuna, Tulu, and WizardLM) on professional questions in GPT-4 and human evaluations. Notably, on the occu-quora set, OccuLLaMA reaches a high win rate of 86.4\% against WizardLM

    Structure-driven intercalated architecture of septuple-atomic-layer MA2Z4MA_2Z_4 family with diverse properties from semiconductor to topological insulator to Ising superconductor

    Full text link
    Motivated by the fact that septuple-atomic-layer MnBi2_2Te4_4 can be structurally viewed as the combination of double-atomic-layer MnTe intercalating into quintuple-atomic-layer Bi2_2Te3_3, we present a general approach of constructing twelve septuple-atomic-layer αi\alpha_i- and βi\beta_i-MA2Z4MA_2Z_4 monolayer family (\emph{i} = 1 to 6) by intercalating MoS2_2-type MZMZ2_2 monolayer into InSe-type A2_2Z2_2 monolayer. Besides reproducing the experimentally synthesized α1\alpha_1-MoSi2_2N4_4, α1\alpha_1-WSi2_2N4_4 and β5\beta_5-MnBi2_2Te4_4 monolayer materials, another 66 thermodynamically and dynamically stable MA2Z4MA_2Z_4 were predicted, which span a wide range of properties upon the number of valence electrons (VEC). MA2Z4MA_2Z_4 with the rules of 32 or 34 VEC are mostly semiconductors with direct or indirect band gap and, however, with 33 VEC are generally metal, half-metal ferromagnetism, or spin-gapless semiconductor upon whether or not an unpaired electron is spin polarized. Moreover, we propose α2\alpha_2-WSi2_2P4_4 for the spin-valley polarization, α1\alpha_1-TaSi2_2N4_4 for Ising superconductor and β2\beta_2-SrGa2_2Se4_4 for topological insulator.Comment: Maintext 9 pages; 5 figures; Supplementary Materials 8 figures and 4 table

    Failure mechanisms and dynamic process control measures of deep buried tunnels in tectonic fracture zones under high in-situ stresses—a case study in Southwestern China

    Get PDF
    Squeezing deformation in tectonic fracture zones under high in-situ stresses has created great difficulties to deep tunnel construction in Southwestern China. This study reports an investigation on large deformation and failure mechanisms of the Wanhe tunnel on the China-Laos Railway through several field tests including the in-situ stress, loosened zone, deformation monitoring, and internal stresses of steel arches. The dynamic process control method is proposed following the combination principle of stress releasing and support resistance. Further, the dynamic process control measures including the advanced and primary supports, the deep-shallow coupled delayed grouting method, and the double steel arches method were applied on site to resist the deformation development. The results of this study indicate that the rapid growth of the tunnel deformation in the early stage was caused by the squeezing effect, and later the loosening effect led to another growing trend of the vault settlement. The dynamic process control method allows to release the deformation of the surrounding rock in the rapid growth stage. Then, it requires to control the deformation within the reserved range by reinforcing the surrounding rock and increasing the stiffness of supports in the later stage. From the feedback of monitoring results, large deformation of Wanhe tunnel was well released and effectively controlled within the deformation allowance. Thus these countermeasures based on the dynamic process control method can guarantee the construction safety of deep buried tunnels in tectonic fracture zones under high in-situ stresses

    Computation and Data Driven Discovery of Topological Phononic Materials

    Get PDF
    © 2021, The Author(s). The discovery of topological quantum states marks a new chapter in both condensed matter physics and materials sciences. By analogy to spin electronic system, topological concepts have been extended into phonons, boosting the birth of topological phononics (TPs). Here, we present a high-throughput screening and data-driven approach to compute and evaluate TPs among over 10,000 real materials. We have discovered 5014 TP materials and grouped them into two main classes of Weyl and nodal-line (ring) TPs. We have clarified the physical mechanism for the occurrence of single Weyl, high degenerate Weyl, individual nodal-line (ring), nodal-link, nodal-chain, and nodal-net TPs in various materials and their mutual correlations. Among the phononic systems, we have predicted the hourglass nodal net TPs in TeO3, as well as the clean and single type-I Weyl TPs between the acoustic and optical branches in half-Heusler LiCaAs. In addition, we found that different types of TPs can coexist in many materials (such as ScZn). Their potential applications and experimental detections have been discussed. This work substantially increases the amount of TP materials, which enables an in-depth investigation of their structure-property relations and opens new avenues for future device design related to TPs

    New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk

    Get PDF
    To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10−8), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk

    New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk

    Get PDF
    To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P <5 x 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk.Peer reviewe

    Advanced Underground Space Technology

    No full text
    The Special Issue titled &ldquo;Advanced Underground Space Technology&rdquo; was launched with an invitation to authors from all over the world to address state-of-the-art challenging topics in tunnelling and underground space technology [...
    corecore