68 research outputs found
Human APOBEC1 cytidine deaminase edits HBV DNA
Retroviruses, hepadnaviruses, and some other retroelements are vulnerable to editing by single stranded DNA cytidine deaminases. Of the eleven human genes encoding such enzymes, eight have demonstrable enzymatic activity. Six of seven human APOBEC3 are able to hyperedit HBV DNA, frequently on both strands. Although human APOBEC1 (hA1) is not generally expressed in normal liver, hA1 can edit single stranded DNA in a variety of experimental assays. The possibility of ectopic expression of hA1 in vivo cannot be ruled out and interestingly, transgenic mice with A1 expressed under a liver specific promoter develop hepatocellular carcinoma. The impact of hA1 on HBV in tissue culture is varied with reports noting either reduced DNA synthesis or not, with cytidine deamination taking a low profile. We sought to examine the hA1 editing activity on replicating HBV. Using highly sensitive 3DPCR it was possible to show that hA1 edits the HBV minus DNA strand as efficiently as hA3G, considered the reference deaminase for HIV and HBV. The dinucleotide specificity of editing was unique among human cytidine deaminases providing a hallmark of use in a posteriori analyses of in vivo edited genomes. Analysis of sequences derived from the serum of two chronic carriers, indicated that hA1 explained only a small fraction of edited HBV genomes. By contrast, several human APOBEC3 deaminases were active including hA3G
Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs
Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population
COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study
Background:
The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms.
Methods:
International, prospective observational study of 60â109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms.
Results:
âTypicalâ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (â€â18 years: 69, 48, 23; 85%), older adults (â„â70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each Pâ<â0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country.
Interpretation:
This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men
Elaboration d'une stratégie vaccinale innovante (administration orale de plantes transgéniques exprimant des antigÚnes du VHB et du VIH-1)
Le développement d un vaccin anti-VIH-1 est une priorité de santé publique. Le tissu lymphoïde associé à la muqueuse intestinale (GALT) est le site préférentiel de réplication du VIH-1 en primo infection. Pour atteindre le GALT, nous avons opté pour l utilisation de plantes transgéniques comme vecteur de production et d administration orale d antigÚnes du VIH-1 et construit un polyépitope du VIH-1 restreint à un allÚle de classe I du CMH. Ce polyépitope a été conçu par sélection d épitopes gag et pol et fusionné à l antigÚne de surface du virus de l hépatite B (AgHBs). L AgHBs est capable de former des pseudo-particules virales (VLPs) véhiculant des peptides immunogÚnes. Nous avons obtenu différents niveaux d expression des VLPs chimÚres portant différents polyépitopes du VIH-1. Nous avons généré deux espÚces végétales exprimant ces VLPs. L immunogénicité des différents VLPs a été caractérisée chez la souris. Une premiÚre étude a consisté en une vaccination parentérale par ADN, suivie de rappels par administration orale de tabac transgénique. La deuxiÚme étude a consisté en une vaccination effectuée exclusivement par administration orale de différentes doses d antigÚne et de plantes. Pour la premiÚre fois on a démontré qu il est possible d induire une activation des lymphocytes T CD8+ anti-VIH-1 par l administration orale de plantes transgéniques exprimant des antigÚnes du VIH-1. Nous avons mis en évidence que l administration de doses faibles d antigÚne et de plantes lyophilisées favorise l immunogénicité et limite la tolérance à l antigÚne. Ces résultats ouvrent une nouvelle voie d étude dans la vaccination anti-VIH-1.PARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF
Production of recombinant HIV-1/HBV virus-like particles in Nicotiana tabacum and Arabidopsis thaliana plants for a bivalent plant-based vaccine.
International audienceHuman immunodeficiency virus (HIV-1) and hepatitis B virus (HBV) spread via similar transmission pathways, and infection by HBV occurs in up to 32% of HIV-1 cases. Here, we describe the successful expression of novel recombinant HIV-1/HBV virus-like particles (VLPs) in Nicotiana tabacum and Arabidopsis thaliana. The production levels and quality of the recombinant VLPs were comparable in the two plants, showing that parameters intrinsic to the recombinant proteins determined their assembly into VLPs. These heterologous VLPs can be used in a bivalent anti-HIV-1/-HBV vaccine, administrated via ingestion of transgenic plants
A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses.
The prediction of viral zoonosis epidemics has become a major public health issue. A profound understanding of the viral population in key animal species acting as reservoirs represents an important step towards this goal. Bats harbor diverse viruses, some of which are of particular interest because they cause severe human diseases. However, little is known about the diversity of the global population of viruses found in bats (virome). We determined the viral diversity of five different French insectivorous bat species (nine specimens in total) in close contact with humans. Sequence-independent amplification, high-throughput sequencing with Illumina technology and a dedicated bioinformatics analysis pipeline were used on pooled tissues (brain, liver and lungs). Comparisons of the sequences of contigs and unassembled reads provided a global taxonomic distribution of virus-related sequences for each sample, highlighting differences both within and between bat species. Many viral families were present in these viromes, including viruses known to infect bacteria, plants/fungi, insects or vertebrates, the most relevant being those infecting mammals (Retroviridae, Herpesviridae, Bunyaviridae, Poxviridae, Flaviviridae, Reoviridae, Bornaviridae, Picobirnaviridae). In particular, we detected several new mammalian viruses, including rotaviruses, gammaretroviruses, bornaviruses and bunyaviruses with the identification of the first bat nairovirus. These observations demonstrate that bats naturally harbor viruses from many different families, most of which infect mammals. They may therefore constitute a major reservoir of viral diversity that should be analyzed carefully, to determine the role played by bats in the spread of zoonotic viral infections
Oral administration of low doses of plant-based HBsAg induced antigen-specific IgAs and IgGs in mice, without increasing levels of regulatory T cells.
International audiencePlant-based oral vaccines run the risk of activating regulatory T cells (Tregs) and suppressing the antigen-specific immune response via oral tolerance. Mice humanized for two HLA alleles (HLA-A2.1 and HLA-DR1) were used to measure changes in Tregs and antigen-specific immune responses induced by the oral administration of tobacco (Nicotiana tabacum), expressing the hepatitis B surface antigen (HBsAg). Antigen-specific CD8+ T cell activation was not detected, but the plant-based oral immunization, without adjuvant, resulted in humoral responses comparable to those obtained by adjuvanted DNA immunization. Treg titers did not increase with DNA immunization. In contrast, with plant immunization, Tregs increased linearly to reach a plateau at high antigen doses. The highest humoral IgA and IgG responses correlated with the lowest plant antigen dose (0.5 ng), while for DNA immunization the best antibody responses were obtained at higher antigen doses. These experiments suggest that plant-based oral vaccines could be adjusted to minimize tolerance, while still inducing an immune response. Oral tolerance and adjuvant engineering in plants are discussed
Circumstances of HumanâBat interactions and risk of lyssavirus transmission in metropolitan France
International audienceSince the elimination of dog and terrestrial wild animal rabies, bat exposures remain the only source of autochthonous lyssavirus transmission to humans in Western Europe. European bats have already been found infected with several lyssaviruses, and human-bat interactions represent a risk of viral transmission and fatal encephalitis for humans. In this study, we aim to better characterize exposures to bats in metropolitan France from 2003 to 2016 and to identify circumstances associated with exposures to lyssavirus-positive bats. Two complementary sources of data were analysed: 1/ data associated with bats responsible for human exposure received for Lyssavirus testing by the French National Reference Centre for Rabies (NRCR); and 2/ data pertaining to individuals seeking medical care through the French Anti-Rabies Clinics network after contact with a bat. From 2003 to 2016, 425 bats originating from metropolitan France were submitted to the NRCR and 16 (4%) were found positive with a lyssavirus (EBLV-1b was diagnosed in 9 bats, EBLV-1a in 6 and BBLV in one specimen). The two factors associated with bat positivity in our study were the female sex and the bat belonging to the E. serotinus species. During the same study period, 1718 individuals sought care at an Anti-Rabies Clinic after exposure to a bat resulting in an estimated incidence of human-bat interactions of 1.96 per 106 person-years. The two most frequent circumstances of exposure were handling or bites. Interactions mostly involved one adult human being and one live and non-sick-looking bat. Our study provides new insights about circumstances of human-bat interactions and may be helpful to target prevention interventions to improve the awareness of the population of the risk of lyssavirus transmission
Immunogenicity and safety of Ebola virus vaccines in healthy adults: a systematic review and network meta-analysis
Clinical development of Ebola virus vaccines (EVV) was accelerated by the West African Ebola virus epidemic which remains the deadliest in history. To compare and rank the EVV according to their immunogenicity and safety. A total of 21 randomized controlled trial, evaluating seven different vaccines with different doses, and 5,275 participants were analyzed. The rVSVÎG-ZEBOV-GP (2 Ă 10 7) vaccine was more immunogenic (P-score 0.80). For pain, rVSVÎG-ZEBOV-GP (â€10 5) had few events (P-score 0.90). For fatigue and headache, the DNA-EBOV (†4 mg) was the best one with P-scores of 0.94 and 0.87, respectively. For myalgia, the ChAd3 (10 10) had a lower risk (P-score 0.94). For fever, the Ad5.ZEBOV (†8 Ă 10 10) was the best one (P-score 0.80). The best vaccine to be used to stop future outbreak of Ebola is the rVSVDG-ZEBOV-GP vaccine at dose of 2 Ă 107 PFU
Immunogenicity and tolerance following HIV-1/HBV plant-based oral vaccine administration.
International audienceTransgenic tobacco plants expressing a HIV-1 polyepitope associated with hepatitis B (HBV) virus-like particles (VLPs) were previously described. It is demonstrated here that oral administration of these transgenic plants to humanized HSB mice to boost DNA-priming can elicit anti-HIV-1 specific CD8+ T cell activation detectable in mesenteric lymph nodes. Nevertheless, a significant regulatory T cell activation was induced in vivo by the vaccination protocols. The balance between tolerance and immunogenicity remains the main concern in the proof of concept of plant-based vaccine
- âŠ