24 research outputs found

    Severity scoring of manganese health effects for categorical regression

    Get PDF
    Characterizing the U-shaped exposure response relationship for manganese (Mn) is necessary for estimating the risk of adverse health from Mn toxicity due to excess or deficiency. Categorical regression has emerged as a powerful tool for exposure-response analysis because of its ability to synthesize relevant information across multiple studies and species into a single integrated analysis of all relevant data. This paper documents the development of a database on Mn toxicity designed to support the application of categorical regression techniques. Specifically, we describe (i) the conduct of a systematic search of the literature on Mn toxicity to gather data appropriate for dose-response assessment; (ii) the establishment of inclusion/exclusion criteria for data to be included in the categorical regression modeling database; (iii) the development of a categorical severity scoring matrix for Mn health effects to permit the inclusion of diverse health outcomes in a single categorical regression analysis using the severity score as the outcome variable; and (iv) the convening of an international expert panel to both review the severity scoring matrix and assign severity scores to health outcomes observed in studies (including case reports, epidemiological investigations, and in vivo experimental studies) selected for inclusion in the categorical regression database. Exposure information including route, concentration, duration, health endpoint(s), and characteristics of the exposed population was abstracted from included studies and stored in a computerized manganese database (MnDB), providing a comprehensive repository of exposure-response information with the ability to support categorical regression modeling of oral exposure data

    The use of categorical regression in evidence integration

    Get PDF
    Exposure-response assessment methods have shifted towards more quantitative approaches, with health risk assessors exploring more statistically driven techniques. These assessments, however, usually rely on one critical health effect from a single key study. Categorical regression addresses this limitation by incorporating data from all relevant studies – including human, animal, and mechanistic studies - thereby including a broad spectrum of health endpoints and exposure levels for exposure-response analysis in an objective manner. Categorical regression requires the establishment of ordered response categories corresponding to increasingly severe adverse health outcomes, and the availability of a comprehensive database that summarizes all data on different outcomes from different studies, including the exposure or dose at which these outcomes are observed and their severity. It has found application in the risk assessment of essential nutrients and trace metals. Since adverse effects may arise from either deficient or excess exposure, the exposure-response curve is U-shaped, which provides a basis for determining optimal intake levels that minimize the joint risks of deficiency and excess. This article provides an overview of the use of categorical regression fit exposure-response models incorporating data from multiple evidence streams. An extension of categorical regression that permits the simultaneous analysis of excess and deficiency toxicity data is presented and applied to comprehensive databases on copper and manganese. Future applications of categorical regression will be able to make greater use of diverse data sets developed using new approach methodologies, which can be expected to provide valuable information on toxic responses of varying severity

    Phantasia - the psychological significance of lifelong visual imagery vividness extremes

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordVisual imagery typically enables us to see absent items in the mind’s eye. It plays a role in memory, day-dreaming and creativity. Since coining the terms aphantasia and hyperphantasia to describe the absence and abundance of visual imagery, we have been contacted by many thousands of people with extreme imagery abilities. Questionnaire data from 2000 participants with aphantasia and 200 with hyperphantasia indicate that aphantasia is associated with scientific and mathematical occupations, whereas hyperphantasia is associated with ‘creative’ professions. Participants with aphantasia report an elevated rate of difficulty with face recognition and autobiographical memory, whereas participants with hyperphantasia report an elevated rate of synaesthesia. Around half those with aphantasia describe an absence of wakeful imagery in all sense modalities, while a majority dream visually. Aphantasia appears to run within families more often than would be expected by chance. Aphantasia and hyperphantasia appear to be widespread but neglected features of human experience with informative psychological associations.Arts and Humanities Research Council (AHRC

    Proceedings of the 3rd Biennial Conference of the Society for Implementation Research Collaboration (SIRC) 2015: advancing efficient methodologies through community partnerships and team science

    Get PDF
    It is well documented that the majority of adults, children and families in need of evidence-based behavioral health interventionsi do not receive them [1, 2] and that few robust empirically supported methods for implementing evidence-based practices (EBPs) exist. The Society for Implementation Research Collaboration (SIRC) represents a burgeoning effort to advance the innovation and rigor of implementation research and is uniquely focused on bringing together researchers and stakeholders committed to evaluating the implementation of complex evidence-based behavioral health interventions. Through its diverse activities and membership, SIRC aims to foster the promise of implementation research to better serve the behavioral health needs of the population by identifying rigorous, relevant, and efficient strategies that successfully transfer scientific evidence to clinical knowledge for use in real world settings [3]. SIRC began as a National Institute of Mental Health (NIMH)-funded conference series in 2010 (previously titled the “Seattle Implementation Research Conference”; $150,000 USD for 3 conferences in 2011, 2013, and 2015) with the recognition that there were multiple researchers and stakeholdersi working in parallel on innovative implementation science projects in behavioral health, but that formal channels for communicating and collaborating with one another were relatively unavailable. There was a significant need for a forum within which implementation researchers and stakeholders could learn from one another, refine approaches to science and practice, and develop an implementation research agenda using common measures, methods, and research principles to improve both the frequency and quality with which behavioral health treatment implementation is evaluated. SIRC’s membership growth is a testament to this identified need with more than 1000 members from 2011 to the present.ii SIRC’s primary objectives are to: (1) foster communication and collaboration across diverse groups, including implementation researchers, intermediariesi, as well as community stakeholders (SIRC uses the term “EBP champions” for these groups) – and to do so across multiple career levels (e.g., students, early career faculty, established investigators); and (2) enhance and disseminate rigorous measures and methodologies for implementing EBPs and evaluating EBP implementation efforts. These objectives are well aligned with Glasgow and colleagues’ [4] five core tenets deemed critical for advancing implementation science: collaboration, efficiency and speed, rigor and relevance, improved capacity, and cumulative knowledge. SIRC advances these objectives and tenets through in-person conferences, which bring together multidisciplinary implementation researchers and those implementing evidence-based behavioral health interventions in the community to share their work and create professional connections and collaborations

    Use of a Geographic Information System to create treatment groups for group-randomized community trials: The Minnesota Heart Health Program

    No full text
    BACKGROUND: Group-randomized trials of communities often rely on the convenience of pre-existing administrative divisions, such as school district boundaries or census entities, to divide the study area into intervention and control sites. However, these boundaries may include substantial heterogeneity between regions, introducing unmeasured confounding variables. This challenge can be addressed by the creation of exchangeable intervention and control territories that are equally weighted by pertinent socio-demographic characteristics. The present study used territory design software as a novel approach to partitioning study areas for The Minnesota Heart Health Program\u27s Ask about Aspirin Initiative. METHODS: Twenty-four territories were created to be similar in terms of age, sex, and educational attainment, as factors known to modify aspirin use. To promote ease of intervention administration, the shape and spread of the territories were controlled. Means of the variables used in balancing the territories were assessed as well as other factors that were not used in the balancing process. RESULTS: The analysis demonstrated that demographic characteristics did not differ significantly between the intervention and control territories created by the territory design software. CONCLUSIONS: The creation of exchangeable territories diminishes geographically based impact on outcomes following community interventions in group-randomized trials. The method used to identify comparable geographical units may be applied to a wide range of population-based health intervention trials. TRIAL REGISTRATION: National Institutes of Health (Clinical Trials.gov), Identifier: NCT02607917 . Registered on 16 November 2015

    Behavioral and neural signatures of visual imagery vividness extremes: Aphantasia vs. Hyperphantasia

    No full text
    Although Galton recognised in 1880 that some individuals lack visual imagery, this phenomenon was largely neglected over the following century. We recently coined the terms ‘aphantasia’ and ‘hyperphantasia’ to describe visual imagery vividness extremes, unlocking a sustained surge of public interest. Aphantasia is associated with subjective impairment of face recognition and autobiographical memory. Here we report the first systematic, wide-ranging neuropsychological and brain imaging study of people with aphantasia (n=24), hyperphantasia (n=25) and mid-range imagery vividness (n=20). Despite equivalent performance on standard memory tests, there were marked group differences on measures of autobiographical memory and imagination, participants with hyperphantasia outperforming controls who outperformed participants with aphantasia. Face recognition difficulties were reported more commonly in aphantasia. The Revised NEO Personality Inventory highlighted reduced extroversion in the aphantasia group and increased openness in the hyperphantasia group. Resting-state fMRI revealed stronger connectivity between prefrontal cortices and the visual network among hyperphantasic than aphantasic participants. In an active fMRI paradigm, there was greater anterior parietal activation among hyperphantasic and control than aphantasic participants when comparing visualisation of famous faces and places with perception. These behavioral and neural signatures of visual imagery vividness extremes validate and illuminate this significant but neglected dimension of individual difference

    Use of a Geographic Information System to create treatment groups for group-randomized community trials: The Minnesota Heart Health Program

    No full text
    Abstract Background Group-randomized trials of communities often rely on the convenience of pre-existing administrative divisions, such as school district boundaries or census entities, to divide the study area into intervention and control sites. However, these boundaries may include substantial heterogeneity between regions, introducing unmeasured confounding variables. This challenge can be addressed by the creation of exchangeable intervention and control territories that are equally weighted by pertinent socio-demographic characteristics. The present study used territory design software as a novel approach to partitioning study areas for The Minnesota Heart Health Program’s “Ask about Aspirin” Initiative. Methods Twenty-four territories were created to be similar in terms of age, sex, and educational attainment, as factors known to modify aspirin use. To promote ease of intervention administration, the shape and spread of the territories were controlled. Means of the variables used in balancing the territories were assessed as well as other factors that were not used in the balancing process. Results The analysis demonstrated that demographic characteristics did not differ significantly between the intervention and control territories created by the territory design software. Conclusions The creation of exchangeable territories diminishes geographically based impact on outcomes following community interventions in group-randomized trials. The method used to identify comparable geographical units may be applied to a wide range of population-based health intervention trials. Trial registration National Institutes of Health (Clinical Trials.gov), Identifier: NCT02607917. Registered on 16 November 2015

    Modeling U-shaped dose-response curves for manganese using categorical regression

    No full text
    Introduction: Manganese is an essential nutrient which can cause adverse effects if ingested to excess or in insufficient amounts, leading to a U-shaped exposure-response relationship. Methods have recently been developed to describe such relationships by simultaneously modeling the exposure-response curves for excess and deficiency. These methods incorporate information from studies with diverse adverse health outcomes within the same analysis by assigning severity scores to achieve a common response metric for exposure-response modeling. Objective: We aimed to provide an estimate of the optimal dietary intake of manganese to balance adverse effects from deficient or excess intake. Methods: We undertook a systematic review of the literature from 1930 to 2013 and extracted information on adverse effects from manganese deficiency and excess to create a database on manganese toxicity following oral exposure. Although data were available for seven different species, only the data from rats was sufficiently comprehensive to support analytical modelling. The toxicological outcomes were standardized on an 18-point severity scale, allowing for a common analysis of all available toxicological data. Logistic regression modelling was used to simultaneously estimate the exposure-response profile for dietary deficiency and excess for manganese and generate a U-shaped exposure-response curve for all outcomes. Results: Data were available on the adverse effects of 6113 rats. The nadir of the U-shaped joint response curve occurred at a manganese intake of 2.70. mg/kg. bw/day with a 95% confidence interval of 2.51-3.02. The extremes of both deficient and excess intake were associated with a 90% probability of some measurable adverse event. Conclusion: The manganese database supports estimation of optimal intake based on combining information on adverse effects from systematic review of published experiments. There is a need for more studies on humans. Translation of our results from r

    Concordance between sites of tumor development in humans and in experimental animals for 111 agents that are carcinogenic to humans

    No full text
    Since the inception of the IARC Monographs Programme in the early 1970s, this Programme has developed 119 Monograph Volumes on more than 1000 agents for which there exists some evidence of cancer risk to humans. Of these, 120 agents were found to meet the criteria for classification as carcinogenic to humans (Group 1). Volume 100 of the IARC Monographs, compiled in 2008-2009 and published in 2012, provided a review and update of the 107 Group 1 agents identified as of 2009. These agents were divided into six broad categories: (I) pharmaceuticals; (II) biological agents; (III) arsenic, metals, fibers and dusts; (IV) radiation; (V) personal habits and indoor combustions; and (VI) chemical agents and related occupations. The Group I agents reviewed in Volume 100, as well as five additional Group 1 agents defined in subsequent Volumes of the Monographs, were used to assess the degree of concordance between sites where tumors originate in humans and experimental animals including mice, rats, hamsters, dogs, and non-human primates using an anatomically based tumor nomenclature system, representing 39 tumor sites and 14 organ and tissue systems. This evaluation identified 91 Group 1 agents with sufficient evidence (82 agents) or limited evidence (9 agents) of carcinogenicity in animals. The most common tumors observed in both humans and animals were those of the respiratory system including larynx, lung, and lower respiratory tract. In humans, respiratory system tumors were noted for 31 of the 111 distinct Group 1 carcinogens identified up to and including Volume 109 of the IARC Monographs, comprising predominantly 14 chemical agents and related occupations in category VI; seven arsenic, metals, fibers, and dusts in category III, and five personal habits and indoor combustions in category V. Subsequent to respiratory system tumors, those in lymphoid and hematopoietic tissues (26 agents), the urothelium (18 agents), and the upper aerodigestive tract (16 agents) were most often seen in humans, while tumors in digestive organs (19 agents), skin (18 agents), and connective tissues (17 agents) were frequently seen in animals. Exposures to radiation, particularly X- and gamma-radiation, and tobacco smoke were associated with tumors at multiple sites in humans. Although the IARC Monographs did not emphasize tumor site concordance between animals and humans, substantial concordance was detected for several organ and tissue systems, even under the stringent criteria for sufficient evidence of carcinogenicity used by IARC. Of the 60 agents for which at least one tumor site was identified in both humans and animals, 52 (87%) exhibited tumors in at least one of the same organ and tissue systems in humans and animals. It should be noted that some caution is needed in interpreting concordance at sites where sample size is particularly small. Although perfect (100%) concordance was noted for agents that induce tumors of the mesothelium, only two Group 1 agents that met the criteria for inclusion in the concordance analysis caused tumors at this site. Although the present analysis demonstrates good concordance between animals and humans for many, but not all, tumor sites, limitations of available data may result in underestimation of concordance
    corecore