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A B S T R A C T

Characterizing the U-shaped exposure response relationship for manganese (Mn) is necessary for
estimating the risk of adverse health from Mn toxicity due to excess or deficiency. Categorical regression
has emerged as a powerful tool for exposure-response analysis because of its ability to synthesize
relevant information across multiple studies and species into a single integrated analysis of all relevant
data. This paper documents the development of a database on Mn toxicity designed to support the
application of categorical regression techniques. Specifically, we describe (i) the conduct of a systematic
search of the literature on Mn toxicity to gather data appropriate for dose-response assessment; (ii) the
establishment of inclusion/exclusion criteria for data to be included in the categorical regression
modeling database; (iii) the development of a categorical severity scoring matrix for Mn health effects to
permit the inclusion of diverse health outcomes in a single categorical regression analysis using the
severity score as the outcome variable; and (iv) the convening of an international expert panel to both
review the severity scoring matrix and assign severity scores to health outcomes observed in studies
(including case reports, epidemiological investigations, and in vivo experimental studies) selected for
inclusion in the categorical regression database. Exposure information including route, concentration,
duration, health endpoint(s), and characteristics of the exposed population was abstracted from included
studies and stored in a computerized manganese database (MnDB), providing a comprehensive
repository of exposure-response information with the ability to support categorical regression modeling
of oral exposure data.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Manganese (Mn) is a naturally occurring element and an
essential nutrient. Dietary intake of Mn is essential for maintaining
a number of important physiological processes, including repro-
duction and development (e.g., formation of healthy cartilage and
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bone), energy metabolism (e.g., pyruvate carboxylase), urea cycle
(e.g., arginase), and antioxidative capacity (e.g., Mn superoxide
dismutase) (Chen et al., 2014). Mn also plays a key role in wound-
healing (ATSDR, 2012). Mn is found in nutritional supplements and
multivitamin preparations (Santos-Burgoa et al., 2001).

There is a large body of scientific literature on adverse health
effects associated with excess or deficient levels of Mn. The toxicity
of Mn due to excess or deficiency has been documented in diverse
studies including case reports, epidemiological studies of occupa-
tional and environmental exposure to Mn, experimental studies in
a range of animal models, and in vitro toxicity tests. Krewski et al.
(2010) describe an approach to incorporation of data from a diverse
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collection of studies of this nature based on categorical regression
of severity scores assigned to the different health outcomes seen in
these studies; the utility of this approach was demonstrated by
application to a database on copper toxicity, similar to the
manganese database (MnDB) developed here. This copper database
(CuDB) was subsequently analyzed by Chambers et al. (2010) to
describe the U-shaped exposure response curve for Cu, which, like
Mn, is an essential element. Further analyses of the CuDB were
recently undertaken by Milton et al. (2016a), where they employed
new approaches to categorical regression analysis of U-shaped
exposure-response curves. In conducting this work, the available
data on Cu toxicity due to both excess and deficiency was entered
into a computerized database designed to accommodate the
collection of information on continuous, dichotomous, categorical
or ordinal data which supports both traditional as well as new
methods for exposure-response assessment. Further motivation
for the use of a systematic approach to the identification and
recording of relevant data on Cu toxicity is to avoid unnecessary
repetition of reviews of the same literature: without a validated
toxicological data storage system, changing regulatory require-
ments, updating risk assessments, and employing new methods
for exposure-response assessment would likely involve unneces-
sary re-reviews of the same body of literature (Guth and Raymond,
1996).

In the field of health risk assessment, the characterization of
exposure-response relationships is important in estimating the
risk of adverse health effects of essential elements from toxicity
due to either excess or deficiency. Health risk scientists have not
yet defined exposure-response curves that simultaneously char-
acterize the risk associated with both Mn deficiency and excess.
Historically, regulatory agencies have used benchmarks such as the
no-observed-adverse-effects level (NOAEL), corresponding to the
level of exposure that does not result in a significant increase in the
risk of adverse effects in the exposed group when compared with
controls: the NOAEL has served as a point of departure (PoD) on the
exposure response curve for establishing a reference dose (RfD) for
human exposure through the application of appropriate adjust-
ment factors (Barnes and Dourson, 1988). These benchmarks are
typically derived from a single key study that considers one critical
effect and rely on weight of evidence assessment for relevant effect
in humans and to a considerable extent on expert opinion. This led
to differences in human exposure guidelines developed by
different regulatory bodies (US EPA, 1993, 1994; Health Canada,
1994; ATSDR, 2000, 2012; WHO, 2000), including occupational
exposure guidelines (Deveau et al., 2015). This is illustrated by the
disparity of health-based limit values for inhalation of respirable
Mn particulate in ambient air (ranging from 0.04 to 0.30 mg/m3)
derived from the same epidemiological study of battery workers
exposed to MnO2 dust (Roels et al., 1992).

More recently, exposure-response assessment methods have
shifted towards more quantitative methods, with health risk
assessors exploring more mathematically driven techniques such
as the benchmark dose (BMD) (Crump, 1984), and signal-to-noise
crossover dose (SNCD) (Sand et al., 2011). Nonetheless, the RfD,
SNCD, and BMD approaches all ultimately rely on one critical
health effect from a single key study.

Categorical regression addresses this limitation by allowing risk
assessors to capture relevant health information across multiple
studies and species, including a broad spectrum of health
endpoints and exposure levels for exposure-response analysis in
an objective and transparent manner. Furthermore, categorical
regression also allows the inclusion of multiple independent
variables, including level and duration of exposure, and variables
that may modify the exposure-response relationship such as age
and sex. For these reasons, categorical regression has been
advocated as a promising tool to characterize health risk in a
comprehensive manner, and has found successful initial applica-
tion in exposure-response modeling (Gift et al., 2008; Allen et al.,
2005; Chambers et al., 2010).

Ten years ago, the US EPA (2006) released a software program
called CatReg, developed to perform categorical regression
modeling and calculate a benchmark level called the extra risk
concentration (ERC). Chambers et al. (2010) used CatReg to perform
an exposure-response analysis on the copper database previously
described, creating separate excess and deficiency exposure-
response models for oral intake. The authors spliced the excess
and deficiency curves together to create a U-Shaped curve, then
estimated the exposure level at the trough of the curve. Other
CatReg applications include hydrogen sulfide (Strickland and
Foureman, 2002; Brown and Strickland, 2003; Brown and Foure-
man, 2005), phosgene (Gift et al., 2008), and acrylamide (Allen
et al., 2005), where excess exposure-toxicity curves were fit to
exposure-response data. Milton et al. (2016a) used the work by
Chambers et al. (2010) as a platform to propose a new method for
defining U-Shaped exposure-response curves based on categorical
regression. The authors applied their methods to the copper (Cu)
toxicity database and obtained a smooth, continuous U-Shaped
exposure-response curve that achieves balance between Cu excess
and deficiency. The authors identified two potential benchmark
levels: the equiprobable crossover point (EPCP), which corre-
sponds to the level of exposure where the risk of toxicity due to
excess is equal to the risk of toxicity due to deficiency, and xMINDUE,
which corresponds to the level of exposure at the bottom of the U-
shaped which minimizes the overall risk due to excess or
deficiency (or both). The methodologies used to derive this U-
shaped exposure-response curve and the estimation of these two
new benchmarks for Mn are discussed in a companion paper
(Milton et al., 2016b).

These new approaches to categorical regression modeling
developed by Milton et al. (2016a) will be used in the manganese
exposure-response assessment. The foundation of categorical
regression modeling is the establishment of ordered response
categories corresponding to increasingly severe adverse health
outcomes and the availability of a comprehensive database which
summarizes ordered response categories for manganese toxicity
from deficiency or excess.

The purpose of this paper is to: 1) describe the development of
the computerized Mn database (MnDB) to support the application
of categorical regression of Mn toxicity due to excess and
deficiency from oral studies; 2) to summarize the development
of the severity scoring system for Mn toxicity; 3) to apply the
severity scoring system to the scientific literature collected on Mn
health effects; and 4) describe the characteristics of the final MnDB
and its use in categorical regression (Fig. 1).

2. Methods

The development of the categorical regression database took
place over the course of two years (2010–2012). Exclusion criteria
were defined and relevant scientific publications were identified
using a systematic literature search and reviewed to ensure the
exclusion criteria were satisfied. A total of 181 eligible studies
described in 218 articles were identified (Appendix A). Detailed
information including animal species, route of exposure, Mn
species, age, sex, study design, dose and duration of exposure, and
health outcome was abstracted from these articles and stored in
the database. If a study involved different exposure scenarios (e.g.,
different exposure routes and pathways, different doses and
concentrations, different exposure durations, different Mn com-
pounds and basal diets, animal species and strains, sex (male and
female subjects)), data for each combination of these parameters
were entered as a separate experiment. In total, the present version



Fig. 1. Work flow diagram of the development and application of the severity scoring matrix to the MnDB.
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of the MnDB includes data from 272 experiments. There are
generally several dose levels within a single experiment, with a
separate record created for each dose level. Some studies are
described in more than one article: in this event, information from
these articles was combined so as to avoid duplication in the MnDB.

Upon completion of the MnDB, a draft ordinal severity scoring
matrix covering the spectrum of health outcomes in the MnDB was
created. A three-day workshop was held at Risk Sciences
International in Ottawa, Canada at the end of January 2013 with
participation of experts in epidemiology, toxicology, medicine,
veterinary sciences, and risk science. The expert panel was charged
to review and modify the ordinal scale of severity scores and apply
it to the health outcomes in the computerized database. The expert
panel also modified and endorsed the study exclusion criteria
specified below in Section 2.1.

2.1. Literature search and exclusion criteria

To develop a robust categorical regression database, it was
important to first identify relevant scientific reports for inclusion in
the database. To achieve this, the International Manganese Institute
(IMnI) electronic library reference list as well as Ovid Medline/
Embase and Toxline bibliographic databases were searched. Search
terms are provided in Appendix B. No limits were applied to
publication date; studies published as early as 1930 and as late as
2013 were included in the analysis. References of identified articles
were also searched to identify further relevant publications. Case
reports, epidemiological studies and in vivo experimental studies
were considered as potentially eligible for inclusion.

The international expert panel also guided the modification of
exclusion criteria. For example, it was suggested that studies with
transgenic animals with altered metabolic profiles that might be of
limited relevance to human health risk assessment be excluded
from database until scientific data (e.g., PBPK modeling data) is
available to compare dose metrics against conventional animal
models. It was also suggested that these studies be retained as a
separate group in the MnDB for possible use in categorical
regression sensitivity analysis. Similarly, arguments for inclusion
of metabolic/pharmacokinetic and in vitro studies could be made,
as these studies may be useful in elaborating toxicity pathways for
Mn. For example, in experiments in which neurotransmitters were
evaluated, in vitro studies might be useful in determining severity
level of the potential adverse outcomes. However, in the absence of
formal criteria for incorporating information from pharmacoki-
netic and in vitro studies into the assignment of severity scores to
support categorical regression, the use of such data was not
considered in the present exercise.

The final exclusion criteria reflect the modifications and
suggestions provided by the expert panel. The exclusion criteria
are:

� exposure to organic manganese (Mn) compounds;
� inadequate information to characterize the dose and/or duration
of exposure;

� the information could not be entirely attributed to the effects of
manganese alone (due to the presence of possible confounding);

� the exposure route was not relevant for humans;
� exposure occurred in utero;
� exposure occurred by lactation;
� the animal model was not considered suitable for human health
risk assessment (ruminant species, non-mammals)

� the study focussed on validation of potential exposure biomark-
ers (e.g. Mn in blood and urine);

� there was inadequate statistical reporting of data;
� the study focused on pharmacokinetic parameters, or Mn body
burden;

� the study was conducted in an in vitro test system (which is
difficult to extrapolate to human exposure-response);

� the article was a review rather than original research study.

Exclusion criterion (2) was further developed for application to
epidemiologic studies, excluding studies with:

� no “external” measures of exposure (e.g. Mn in air), wherein only
biomarkers were used as exposure metrics;

� data on exposure duration were not available;
� exposure estimates were based on modeling rather than
measurement;

� it was unclear if the measurements of exposure reported total,
inhalable or respirable Mn dust.

2.2. Characteristics of the database

The database was created in Microsoft Access and contains a
wide collection of variables, ranging from qualitative inputs related
to data abstraction/storage to quantitative inputs associated with
exposure. The identifier variable is an ID automatically assigned to
each record. The identifier variable also contains the first author’s
last name, publication year, and the full reference. Note that a
common study ID is assigned to all experiments within the same
study. Characteristics of study subjects, such as species, strain, sex,
and life stage at first exposure (e.g. newborn, weanling, adult,
aged) appear in the database. Furthermore, the characteristics of
exposure, namely, the manganese compound, exposure route
(oral or inhalation), exposure medium (food, drinking water or
gavage for oral exposure; dust or fume for inhalation exposure),
dose of Mn (mg/kg bw/day or concentration of Mn in air (mg/m3)),
and duration of exposure in days also appear in the database.

Each outcome under investigation was described in a separate
text field. An ordinal severity score was assigned to each outcome
on the basis of a severity system described in the following section.
Because neurotoxic effects are “critical” for Mn health risk
assessment, each experiment in the database has an indicator of
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whether or not this experiment contains at least one neurotoxici-
ty-related outcome. The highest severity score associated with a
neurotoxicity-related outcome at each dose level in each experi-
ment was extracted into a separate field. While neurotoxic
outcomes are of interest, CatReg modeling exercises could consider
any and all health outcomes, not only neurotoxicity.

Following complete data abstraction from the scientific
publications included in the database, the data was made available
to the expert panel for their independent review and assignment of
severity scores for each health endpoint measured and included in
the database.

2.3. Development of severity scoring template

All relevant animal and human studies on Mn excess and
deficiency were identified. Investigators at Risk Sciences Interna-
tional (RSI) with expertise in toxicology, epidemiology, medicine
and risk science applied a systematic approach for the examination
and differentiation of the reported Mn effects. Using a severity
scoring system, these Mn effects were evaluated based on their
relevance to humans and the type and magnitude of toxic effects to
create a common measure of the physiological and/or pathophysi-
ological response for application across all studies on Mn excess
and deficiency. The overall approach for the development of the
severity scoring matrix was guided by a similar original scoring
exercise for Cu (Krewski et al., 2010; Chambers et al., 2010), with
appropriate modifications based on the Mn-specific mechanism of
toxicity and target organs. Changes in the Mn toxicokinetic
parameters, biochemical and/or cellular changes involved in Mn
toxicity pathways, changes in body/organ weight, organ/system
impairment or histopathological changes, and reversibility or
irreversibility of these changes were used for evaluation of the
severity of effect. A severity scoring matrix was created ranging
from low to high severity level (from level 0 to level 9 in the excess
severity scoring template and from level 0 to level 8 in the
deficiency severity scoring template) and was used to rank the
severity of all observed effects in animals and humans according to
the organ affected and biochemical effects and/or histopatholog-
ical effects. For example, in the excess severity scoring template,
the lower severity level (severity level 0) was associated with
exposures with no observed changes compared to controls
(effectively the no-observed-adverse-effect level, or NOAEL);
severity level 1 corresponded to homeostatic changes in the
observed effects of Mn; level 2 was associated with early adaptive
systemic changes of unknown clinical significance; level 3 was
associated with lowest-observed-adverse-effect level with bio-
chemical and/or cellular changes involved in Mn toxicity pathways
(the lowest-observed-adverse-effect-level, or LOAEL); and level 4
reflected a more severe adverse effect level associated with
metabolic perturbations. Severity levels 5–9 represented increas-
ingly severe adverse health outcomes. The highest severity levels 7,
8, and 9 were associated with reversible severe clinical signs of
toxicity and histopathological changes, irreversible neurotoxic
effects and histopathological changes, and death, respectively. The
effects observed in animals and humans under conditions of Mn
deficiency are different from the effects observed under Mn excess
exposure due to a different mechanism of toxicity following
inadequate levels of this essential element in the body. The most
severe scores for deficiency, �6, �7 and �8 were associated with
reversible clinical signs of deficiency and histopathological
changes, irreversible histopathological changes and birth defects
and death, respectively.

Table 1 presents the 9 severity categories under excess
exposure and the 8 severity categories under deficiency exposure
and the corresponding adverse health effects associated with each
level of severity. As a result of this exercise, all outcomes reported
in each single study were categorized and scored consistently
across all severity levels. Experts’ opinion was used to revise and
refine the adopted approach, scoring matrix, and assigned scores to
the endpoints extracted from studies on both Mn deficiency and
excess to use in the exposure-response analysis.

The experts highlighted important issues in the consideration
and interpretation of the severity of adverse health outcomes.
Specifically, the need to distinguish between reversible and non-
reversible effects for excess and deficiency, and between adverse
and non-adverse observed outcomes was noted. It was also
suggested that Mn accumulation in target organs (brain and
lungs) versus non-target organs and tissues (blood, kidneys,
urine) be considered, and that the applicability of histopatholog-
ical considerations in case of the histological changes without
reported statistical significance be evaluated. Consideration of the
observed clinical signs as sufficient evidence of an adverse clinical
effect, even without data on statistical significance, was also
advised.

Advice on assigning severity scores was also provided: despite
the fact that some effects were detected by histochemical
methods with no statistical data, a severity score was could be
assigned when the histopathological lesion demonstrates a direct
impact upon target organs. The outcome of fetal death was
considered to be equally severe as death, with a severity score 9
and �8. In the case of limited reporting of outcomes by the
authors (i.e. lack of quantitative information), behaviour changes
with signs of aggressiveness were assigned a severity score of 2
instead of 6. Where local adverse effects were observed it was
recognized that they depend on the chemical form of Mn, pH, and
exposure pattern (e.g. nasal histopathology in inhalation toxicity
studies); in such instances, these portal of entry (local) effects
were assigned a score 5. In studies where health effects were
scored following a recovery period, severity scores 8 and �7 were
assigned when no recovery was observed.

2.4. Dose conversions

Reporting of Mn exposure levels is not uniform across studies
pertaining to oral exposure. In some studies, Mn dose was
expressed in mg Mn per kg body weight per day, while in others
only concentrations in water or food were reported. Because a
common dose metric is required for use in categorical regression of
multiple studies, all Mn exposures were expressed in mg/kg bw/
day. Mn concentrations in food or water were converted into Mn
doses based on body weight and food/water consumption. The
dose conversions were done as follows:

dose in mg=kg bw=day

¼ food intake in grams=dayð Þ � Mn½ �in food in ppm or mg=kg dietÞ
ðbody weight in kg � 1000Þ

dose in mg=kg bw=day

¼ ðwater in take in mL=dayÞ � Mn½ �in water in mg=mLÞ � 1000
ðbody weight in gÞ

Concentrations of Mn in basal diet were converted to Mn doses
using the same approach (US EPA, 2011). Many studies do not
report Mn concentrations in basal diet; in such cases, Mn dose from
the basal diet was assumed on the basis of existing data. The
distribution of existing data on Mn doses from basal diet was
examined visually for rats and mice, the two species with the
greatest numbers of experiments in the database (Table 3). Due to



Table 1
The 18-point severity scoring matrix developed for application to the MnDB.

Direction of Effect Severity
Score

Description of Adverse Health Effect

Deficiency �8 Death
�7 Irreversible anatomic pathology
�6 Clinical signs of deficiency, reversible anatomic pathology
�5 Functional changes (e.g. alterations in reproductive, hepatic, renal or pancreatic function, changes in activity of pancreatic enzymes).

Changes in bone density parameters
�4 Metabolic perturbations.

Changes in Fe, Cu, Zn tissue/biological fluids concentrations.
Changes in bone metabolism (e.g. changes in activity of alkaline phosphatase)
Changes in body or organ weight

�3 Biochemical changes involved in pathways of manganese utilization reflecting the deficiency state (e.g. loss of Mn-dependent enzyme
function).
Decrease in tissue/biofluid Mn concentrations
Changes comparable to those seen in category 3 excess

�2 Changes of unknown clinical significance
Changes in gene expression of Mn-dependent enzymes
Changes comparable to those seen in category 2 excess

�1 Decreased Mn excretion; increased gastrointestinal Mn absorption

No Effect 0 No Effect

Excess 1 Reduced gastrointestinal tract Mn absorption, increased Mn excretion, increase in liver and/or bile Mn concentrations
2 Changes of unknown clinical significance

Changes in gene or protein expression of transport proteins, antioxidant enzymes, neurotransmitter
Changes in Mn concentrations in non-target organs/bio-fluids (e.g. kidney, blood, serum, urine)
Changes in tissue Se and electrolyte concentrations (e.g. K, Mg, Na, Ca)

3 Biochemical and/or cellular changes involved in manganese toxicity pathways
Increased reactive oxygen species generation, decreased antioxidant enzyme activity
Glial activation, increased levels of neuro-inflammatory markers
Alteration in the level of neuro-transmitters
Mitochondrial dysfunction, altered energy metabolism
Increase in brain or lung (inhalation) Mn concentrations

4 Metabolic perturbations
Changes in Fe, Cu, Zn, tissue/biological fluids concentrations
Decreased body weight; changes in organ weight
Changes in responses to stimuli (e.g. amphetamine, cocaine, electroshock, immunological)

5 Clinically significant functional changes (e.g. alterations in hepatic, renal, pulmonary, or reproductive function)
Portal of entry (e.g. respiratory tract, gastrointestinal, dermal) anatomic pathology or related responses
Neurological symptoms (e.g. mood changes, irritability)

6 Adverse neurofunctional changes (electrophysiological, cognitive, and behavioral)
7 Overt clinical signs of toxicity (e.g. tremors, seizures, ataxia)
8 Irreversible anatomic pathology (e.g. neuronal death necrosis and apoptosis)

Irreversible adverse neurological effects (e.g. “cock walk”)
9 Death

Bold values are severity scores used to characterize adverse health effects.

Table 2
Assumptions on Mn in Basal Diet.

Species Mean Dose (mg/kg bw) Median Dose (mg/kg bw) Source(s) Assumptions

Rat 4.5 4 Calculated from MnDB N/A
Mouse 11 10 Calculated from MnDB N/A
Monkey 3.3 N/A Schroeter et al. (2012)

US EPA (1988)
80 ppm concentration in basal diet
8 kg body weight
330 g/day food intake

Rabbit 3 N/A http://www.sdsdiets.com/pdfs/rabbit-standard.pdf 90 ppm concentration in basal diet
3.8 kg body weight
120 g/day food intake

Guinea Pig 5 N/A US EPA (1988) 80 ppm Mn in basal diet
500 g body weight
32 g/day food intake
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presence of outliers, the median basal diet Mn concentration is
preferable to the mean concentration.

In experiments where data on Mn in the basal diet were
unavailable, median doses of Mn from basal diet were assigned
according to the values provided below in Table 2.
3. Results

Each observation in the database corresponds to a single dose
level from each study, with the severity score(s) corresponding to
the adverse health outcome(s) seen at that dose. For each data
point, information is provided on the species, sex, age, route of
exposure, animal strain, exposure level, and duration of exposure.
The database incorporates information from eight different

http://www.sdsdiets.com/pdfs/rabbit-standard.pdf


Table 3
Demographic Characteristics of the MnDB.

Characteristic Number of studies/
Number of dose groups

Species Rattus norvegicus (rat) 251/658
Mus musculus (mouse) 73/197
Monkeya 15/33
Homo sapiens (human) 22/47
Sus scrofa domestica (domesticated
pig)

4/8

Oryctolagus cuniculus
(domesticated rabbit)

10/26

Mesocrictus auratus (Syrian hamster) 1/2
Cavia porcellus (domesticated
guinea pig)

2/4

Sex Male 254/640
Female 72/201
Both sexes 30/85
Unknown 22/48

Exposure
route

Oral 323/827

Drinking water 87/198
Food 138/369
Gavage 94/253
Tablet or capsule 4/8

Inhalation 55/147

Type of study Experimental 367/954
Observational 11/20

a Rhesus (Macaca mulatta), cynomolgus (Macaca fascicularis), and squirrel
monkeys (Saimiri scuireus) were coded as one species (monkey) in the database.
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species, males and females of all ages, inhalation and oral exposure
routes, as well as experimental and observational studies,
providing a comprehensive repository of information for expo-
sure-response assessment.

3.1. Distribution of study characteristics in the MnDB

Table 3 presents the characteristics of these studies by species,
sex, exposure route, and study type. The data summarized in this
Table 4
Distribution of severity scores based on oral exposure data in the MnDB.

Excess or
Deficiency

Severity Score Species

Humans Monkeys Rats 

Deficiency �8 0 0 0 

�7 0 0 22 

�6 0 0 8 

�5 0 0 36 

�4 0 0 163 

�3 0 0 217 

�2 0 0 36 

�1 4 0 16 

No effect 0 71 16 3382 

Excess 1 0 0 18 

2 34 0 353 

3 26 0 555 

4 0 4 618 

5 0 0 53 

6 0 16 470 

7 0 0 39 

8 0 4 31 

9 0 0 96 

Total 135 36 6113 
table provides the raw data needed for categorical regression
analysis.

Table 3demonstrates the vast majority of studies included in
the database were performed on rodents, with males, and via the
oral route of exposure. Studies on humans tend to focus on
marginal to moderate effects due to both Mn deficiency and
excess. In contrast, animal studies tend to focus primarily on
more severe effects, with the objective of defining a broad
continuum of toxicity. At this time, human data are limited, and
may be inadequate for the application of categorical regression,
with convergence issues due to complete separation or quasi-
separation (Allison, 2004) likely to be encountered as artifacts of
a small data set. Complete separation occurs when there is one
exposure level, C, that perfectly separates the data. In this case,
one can ascertain that for exposure levels less than C, Y = 0, and for
exposure levels greater than C, Y = 1. Quasi-separation occurs when
exposure level C yields Y = 0 and Y = 1; this often occurs when
exposure-response data from different studies are combined. As a
consequence, human and animal data will likely need to be
combined when conducting categorical regression analysis. The
CatReg software permits model parameters to be stratified by
animal species: a categorical regression model can be parame-
trized so that human data are used to estimate the intercept, while
animal data are used to characterize the slope (Haber et al., 2001).

3.2. Distribution of severity scores for oral exposure data

The common response scale was applied to the MnDB. In the
data abstraction stage, the group size from each experiment was
also recorded. In determining the distribution of severity scores,
the group level entries were converted to individual level entries,
and their distributions are presented above in Table 4, which
highlights the extensive data available for excess exposures. By
comparison, the information available for deficiency exposure is
much more limited. Within the database, it is clear the number of
studies on excess exposures to Mn is far greater than the number of
studies on deficiency. This reflects the information currently
available in the scientific literature, and corresponds to the greater
regulatory concern about Mn excess than Mn deficiency.
Mice Hamsters Guinea Pigs Rabbits Pigs Total

0 0 0 0 0 0
0 0 0 34 26 82
12 0 0 0 0 20
0 0 0 0 6 42
14 0 0 0 0 177
0 0 0 0 0 217
0 0 0 0 0 36
0 0 0 0 0 20

1112 16 31 116 32 4776

0 0 0 0 0 18
173 0 12 32 0 604
86 0 0 0 16 683
230 0 0 0 0 852
14 0 0 0 0 67
75 0 0 0 0 561
354 0 0 0 0 393
34 0 0 0 0 69
0 0 0 0 0 96

2104 16 43 182 80 8713
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4. Discussion

An important contribution of this work was the development of
an 18-point severity scoring matrix designed to standardize health
endpoints onto a common scale for the application of categorical
regression. This matrix can be adopted as a general template for all
metals. Since all metals exhibit different toxicological properties,
this general template could be modified to accommodate the
characteristics of the metal under study, providing a stepping stone
to begin to look at essential elements known to exhibit both health
benefits and health risks that may be balanced using categorical
regression modeling techniques.

The MnDB offers the largest, most current library of data
abstracted from relevant Mn studies for exposure-response
assessment. The database has proven effective as an organizational
tool to synthesize information abstracted from scientific articles. A
review of the database reveals considerable diversity among the
available studies with regards to species, route of exposure, sex,
and age, indicating stratification is an essential aspect in the
categorical regression analysis. The database is also useful for
identifying gaps in the literature, such as the limited amount of
data on Mn toxicity due to deficiency. Future directions for this
work include more accurate exposure characterization; one such
example is developing biomarkers which can be used to quantitate
exposure. As additional information on Mn toxicity due to
deficiency accrues in the future, a more complete description of
the U-shaped dose response curve for Mn as an essential element
demonstrating toxicity due to both excess and deficiency may be
possible.
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Appendix B. Bibliographical databases searched and search
terms

- IMnI electronic library reference list
- Ovid Medline/Embase and Toxline databases
- Ref erence lists of identified articles

Ovid MEDLINE/EMBASE search terms

1) *manganese1

2) (manganese adj2 deficiency).ti,de,ab.

TOXLINE search terms

1) Exposure term “manganese” was combined using AND/OR
operators with the following terms for health effects:

lung[*1]; pulmonary; fibrosis; asthma; FEV1; bronchi*; alveoli;
respiratory; cough; wheeze; rhinitis; sputum; granuloma*;
inflammat*; irritation; mutagen*; genotoxic*; mutation; chromo-
some near/1 aberration[*1]; micronuclei; cancer; neoplasm[*1];
carcinogen*; carcinoma; dermal; skin; contact near/1 dermatitis;
hyperreactivity; allergy; hives; immunity; immune; GPMT;
sensitization; teratogen*; reproduction; “reproductive toxicity”;
toxic*; fertility; ovary; pregnancy; placenta; testes; sperm*;
gonad*; prolactin; hormone[*1]; foetus; foetus; neonatal; neo-
nate[*1]; newborn[*1]; infant[*1]; child*; offspring; neurodevel-
opment*; behaviour*; neurobehavior*; hyperactivity; lactation*;
breastfeed*; kidney[*1]; blood; haemotoxic*; hemotoxic*; anae-
mia; anaemia; bone; skeletal; skeleton; osteoporosis; liver;
hepatotoxic*; nephrotoxic*; cardiotox*; heart; endocrine; cyto-
tox*; neurotoxic*; brain; spinal near/1 cord; Parkinson*; tremor*;
1 “In databases with a controlled vocabulary this command focuses the term
entered on the command line” (see http://www.ovid.com/site/help/documenta-
tion/ospa/en/syntax.htm#operators).
neuromotor; bradykinesia; cognitive; cognition; intellect*; de-
mentia; memory; learning; neuropathy; biomonitoring; biological
near/1 monitoring; absorption; distribution; metabolism; bio-
transformation; excretion; accumulation; bioavailability; iron

2) Manganese near/2 deficiency.
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