8,296 research outputs found
Mineral maturity and crystallinity index are distinct characteristics of bone mineral
The purpose of this study was to test the hypothesis that mineral maturity and crystallinity index are two different characteristics of bone mineral. To this end, Fourier transform infrared microspectroscopy (FTIRM) was used. To test our hypothesis, synthetic apatites and human bone samples were used for the validation of the two parameters using FTIRM. Iliac crest samples from seven human controls and two with skeletal fluorosis were analyzed at the bone structural unit (BSU) level by FTIRM on sections 2–4 lm thick. Mineral maturity and crystallinity index were highly correlated in synthetic apatites but poorly correlated in normal human bone. In skeletal fluorosis, crystallinity index was increased and maturity decreased, supporting the fact of separate measurement of these two parameters. Moreover, results obtained in fluorosis suggested that mineral characteristics can be modified independently of bone remodeling. In conclusion, mineral maturity and crystallinity index are two different parameters measured separately by FTIRM and offering new perspectives to assess bone mineral traits in osteoporosis
Transit timing variation in exoplanet WASP-3b
Photometric follow-ups of transiting exoplanets may lead to discoveries of
additional, less massive bodies in extrasolar systems. This is possible by
detecting and then analysing variations in transit timing of transiting
exoplanets. We present photometric observations gathered in 2009 and 2010 for
exoplanet WASP-3b during the dedicated transit-timing-variation campaign. The
observed transit timing cannot be explained by a constant period but by a
periodic variation in the observations minus calculations diagram. Simplified
models assuming the existence of a perturbing planet in the system and
reproducing the observed variations of timing residuals were identified by
three-body simulations. We found that the configuration with the hypothetical
second planet of the mass of about 15 Earth masses, located close to the outer
2:1 mean motion resonance is the most likely scenario reproducing observed
transit timing. We emphasize, however, that more observations are required to
constrain better the parameters of the hypothetical second planet in WASP-3
system. For final interpretation not only transit timing but also photometric
observations of the transit of the predicted second planet and the high
precision radial-velocity data are needed.Comment: MNRAS accepte
Topological mirror symmetry with fluxes
Motivated by SU(3) structure compactifications, we show explicitly how to
construct half--flat topological mirrors to Calabi--Yau manifolds with NS
fluxes. Units of flux are exchanged with torsion factors in the cohomology of
the mirror; this is the topological complement of previous
differential--geometric mirror rules. The construction modifies explicit SYZ
fibrations for compact Calabi--Yaus. The results are of independent interest
for SU(3) compactifications. For example one can exhibit explicitly which
massive forms should be used for Kaluza--Klein reduction, proving previous
conjectures. Formality shows that these forms carry no topological information;
this is also confirmed by infrared limits and old classification theorems.Comment: 35 pages, 5 figure
Semiclassical coherent state propagator for systems with spin
We derive the semiclassical limit of the coherent state propagator for
systems with two degrees of freedom of which one degree of freedom is canonical
and the other a spin. Systems in this category include those involving
spin-orbit interactions and the Jaynes-Cummings model in which a single
electromagnetic mode interacts with many independent two-level atoms. We
construct a path integral representation for the propagator of such systems and
derive its semiclassical limit. As special cases we consider separable systems,
the limit of very large spins and the case of spin 1/2.Comment: 19 pages, no figure
Dynamics of Phase Transitions by Hysteresis Methods I
In studies of the QCD deconfining phase transition or crossover by means of
heavy ion experiments, one ought to be concerned about non-equilibrium effects
due to heating and cooling of the system. Motivated by this, we look at
hysteresis methods to study the dynamics of phase transitions. Our systems are
temperature driven through the phase transition using updating procedures in
the Glauber universality class. Hysteresis calculations are presented for a
number of observables, including the (internal) energy, properties of
Fortuin-Kasteleyn clusters and structure functions. We test the methods for 2d
Potts models, which provide a rich collection of phase transitions with a
number of rigorously known properties. Comparing with equilibrium
configurations we find a scenario where the dynamics of the transition leads to
a spinodal decomposition which dominates the statistical properties of the
configurations. One may expect an enhancement of low energy gluon production
due to spinodal decomposition of the Polyakov loops, if such a scenario is
realized by nature.Comment: 12 pages, revised after referee report, to appear in Phys. Rev.
Evidence for Static Magnetism in the Vortex Cores of Ortho-II YBaCuO
Evidence for static alternating magnetic fields in the vortex cores of
underdoped YBaCuO is reported. Muon spin rotation measurements
of the internal magnetic field distribution of the vortex state of
YBaCuO in applied fields of T and T reveal a
feature in the high-field tail of the field distribution which is not present
in optimally doped YBaCuO and which fits well to a model with
static magnetic fields in the vortex cores. The magnitude of the fields is
estimated to be 18(2) G and decreases above K. We discuss possible
origins of the additional vortex core magnetism within the context of existing
theories.Comment: Submitted to PRL; corresponding author: [email protected]
Theory of Scanning Tunneling Spectroscopy of Magnetic-Field-Induced Discrete Nodal States in a D-Wave Superconductor
In the presence of an external magnetic field, the low lying elementary
excitations of a d-wave superconductor have quantized energy and their momenta
are locked near the node direction. It is argued that these discrete states can
most likely be detected by a local probe, such as a scanning tunneling
microscope. The low temperature local tunneling conductance on the Wigner-Seitz
cell boundaries of the vortex lattice is predicted to show peaks spaced as . The peak is anomalous, and it is present only
if the superconducting order parameter changes sign at certain points on the
Fermi surface. Away from the cell boundary, where the superfluid velocity is
nonzero, each peak splits, in general, into four peaks, corresponding to the
number of nodes in the order parameter.Comment: RevTeX 3.0, 4 pages, 3 figures (included
The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species
Genes in durophage intersection set at 15 dpf. This is a comma separated table of the genes in the 15 dpf durophage intersection set. Given are edgeR results for each pairwise comparison. Columns indicating whether a gene is included in the intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 13Â kb
Cellular, molecular and functional characterisation of YAC transgenic mouse models of Friedreich Ataxia
Copyright © 2014 Anjomani Virmouni et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Background - Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder, caused by a GAA repeat expansion mutation within intron 1 of the FXN gene. We have previously established and performed preliminary characterisation of several human FXN yeast artificial chromosome (YAC) transgenic FRDA mouse models containing GAA repeat expansions, Y47R (9 GAA repeats), YG8R (90 and 190 GAA repeats) and YG22R (190 GAA repeats).
Methodology/Principal Findings - We now report extended cellular, molecular and functional characterisation of these FXN YAC transgenic mouse models. FXN transgene copy number analysis of the FRDA mice demonstrated that the YG22R and Y47R lines each have a single copy of the FXN transgene while the YG8R line has two copies. Single integration sites of all transgenes were confirmed by fluorescence in situ hybridisation (FISH) analysis of metaphase and interphase chromosomes. We identified significant functional deficits, together with a degree of glucose intolerance and insulin hypersensitivity, in YG8R and YG22R FRDA mice compared to Y47R and wild-type control mice. We also confirmed increased somatic GAA repeat instability in the cerebellum and brain of YG22R and YG8R mice, together with significantly reduced levels of FXN mRNA and protein in the brain and liver of YG8R and YG22R compared to Y47R.
Conclusions/Significance - Together these studies provide a detailed characterisation of our GAA repeat expansion-based YAC transgenic FRDA mouse models that will help investigations of FRDA disease mechanisms and therapy.European Union, Ataxia UK and FARA
- …