6,776 research outputs found

    SONTRAC—a scintillating plastic fiber tracking detector for neutron and proton imaging spectroscopy

    Get PDF
    SONTRAC (SOlar Neutron TRACking imager and spectrometer) is a conceptual instrument intended to measure the energy and incident direction of 20–150 MeV neutrons produced in solar flares. The intense neutron background in a low-Earth orbit requires that imaging techniques be employed to maximize an instrument’s signal-to-noise ratio. The instrument is comprised of mutually perpendicular, alternating layers of parallel, scintillating, plastic fibers that are viewed by optoelectronic devices. Two stereoscopic views of recoil proton tracks are necessary to determine the incident neutron’s direction and energy. The instrument can also be used as a powerful energetic proton imager. Data from a fully functional 3-d prototype are presented. Early results indicate that the instrument’s neutron energy resolution is approximately 10% with the neutron incident direction determined to within a few degrees

    BOARD INVITED REVIEW: Prospects for improving management of animal disease introductions using disease-dynamic models

    Get PDF
    Management and policy decisions are continually made to mitigate disease introductions in animal populations despite often limited surveillance data or knowledge of disease transmission processes. Science-based management is broadly recognized as leading to more effective decisions yet application of models to actively guide disease surveillance and mitigate risks remains limited. Disease-dynamic models are an efficient method of providing information for management decisions because of their ability to integrate and evaluate multiple, complex processes simultaneously while accounting for uncertainty common in animal diseases. Here we review disease introduction pathways and transmission processes crucial for informing disease management and models at the interface of domestic animals and wildlife. We describe how disease transmission models can improve disease management and present a conceptual framework for integrating disease models into the decision process using adaptive management principles. We apply our framework to a case study of African swine fever virus in wild and domestic swine to demonstrate how disease-dynamic models can improve mitigation of introduction risk. We also identify opportunities to improve the application of disease models to support decision-making to manage disease at the interface of domestic and wild animals. First, scientists must focus on objective-driven models providing practical predictions that are useful to those managing disease. In order for practical model predictions to be incorporated into disease management a recognition that modeling is a means to improve management and outcomes is important. This will be most successful when done in a cross-disciplinary environment that includes scientists and decisionmakers representing wildlife and domestic animal health. Lastly, including economic principles of value-of-information and cost-benefit analysis in disease-dynamic models can facilitate more efficient management decisions and improve communication of model forecasts. Integration of disease-dynamic models into management and decision-making processes is expected to improve surveillance systems, risk mitigations, outbreak preparedness, and outbreak response activities

    SONTRAC: an imaging spectrometer for solar neutrons

    Get PDF
    An instrument capable of unambiguously determining the energy and direction of incident neutrons has important applications in solar physics-as well as environmental monitoring and medical/radiological sciences. The SONTRAC (SOlar Neutron TRACking) instrument is designed to operate in the neutron energy range of 20-250 MeV. The measurement principle is based on non-relativistic double scatter of neutrons off ambient protons (n-p scattering) within a block of densely packed scintillating fibers. Using this double-scatter mode it is possible to uniquely determine neutron energy and direction on an event-by-event basis. A fully operational science model of such an instrument has been built using 300 ÎŒm (250 ÎŒm active) scintillating fibers. The science model consists of a 5×5×5 cm cube of orthogonal plastic scintillating fiber layers. Two orthogonal imaging chains, employing image intensifiers and CCD cameras, allow full 3-dimensional reconstruction of scattered proton particle tracks. We report the results of the science model instrument calibration using 35-65 MeV protons. The proton calibration is the first step toward understanding the instrument response to n-p scatter events. Preliminary results give proton energy resolution of 2% (6%) at 67.5 (35) MeV, and angular resolution of 2° (4.5°) at 67.5 (35) MeV. These measurements are being used to validate detailed instrument simulations that will be used to optimize the instrument design and develop quantitative estimates of science return. Based on the proton calibration, neutron energy and angular resolution for a 10×10×10 cm version of SONTRAC is expected to be ~5% an

    Summer habitat use and movements of invasive wild pigs (Sus scrofa) in Canadian agro-ecosystems

    Get PDF
    Resource selection informs understanding of a species’ ecology and is especially pertinent for invasive species. Since introduced to Canada, wild pigs (Sus scrofa Linnaeus, 1978) remain understudied despite recognized negative impacts on native and agricultural systems globally. Elsewhere in North America, pigs typically use forests and forage in agricultural crops. We hypothesized Canadian wild pigs would behave similarly, and using GPS locations from 15 individuals, we examined diel and seasonal resource selection and movement in the Canadian prairie region. Forests were predominately selected during the day, while corn (Zea mays L.), oilseeds, and wheat (Triticum aestivum L.) were predominately selected at night. Forests and corn were consistently selected throughout the growing season.Wetlands and forests showed greater use rates than other habitats, with evident trade-offs as crop use increased with the timing of maturation. Activity was consistent with foraging in growing crops. Results indicate diel patterns were likely a function of short-term needs to avoid daytime anthropogenic risk, while seasonal patterns demonstrate how habitats that fill multiple functional roles——food, cover, and thermoregulation——can be optimized. Understanding selection by invasive species is an important step in understanding their potential environmental impacts in novel environments and informs their management

    Age-Specific Nesting Performance by Northern Bobwhites

    Get PDF
    Greater reproductive productivity of adult versus juvenile northern bobwhites (Colinus virginianus) has been hypothesized as a factor for rapid population growth. Research on bobwhites in the western portions of the species’ range has not supported this hypothesis; however, no effort has been made to investigate age-specific reproduction on population dynamics in the southeast. We measured age- specific reproductive parameters between adult and juvenile bobwhites during 2000–2010. We radio-marked 1,069 females of which 308 were adults and 761 were juveniles. Nests per hens for adults (0.78 nests/hen) was slightly greater than that for juveniles (0.65 nests/hen) (P 1⁄4 0.09). Adult productivity was 1.7 times greater than for juveniles in 4 of 10 years which corresponded to years of population growth. No differences were found in initial clutch sizes or nesting success. Adult hens began incubation earlier than juveniles in all but 1 year suggesting increased nesting may be due to early recrudescence in adults. The magnitude of age-specific reproductive differences in short-lived species like bobwhites is not as great as long-lived species, but has implications for understanding bobwhite population dynamics and harvest

    Single-sided CZT strip detectors

    Get PDF
    We report progress in the study of thick CZT strip detectors for 3-D imaging and spectroscopy and discuss two approaches to device design. Unlike double-sided strip detectors, these devices feature both row and column contacts implemented on the anode surface. This electron-only approach circumvents problems associated with poor hole transport in CZT that normally limit the thickness and energy range of double-sided strip detectors. The work includes laboratory and simulation studies aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma radiation measurements while minimizing the number and complexity of the electronic readout channels. These devices can achieve similar performance to pixel detectors for both 3-D imaging and spectroscopy. The low channel count approach can significantly reduce the complexity and power requirements of the readout electronics. This is particularly important in applications requiring large area detector arrays. We show two single-sided strip detector concepts. One, previously reported, features rows established with collecting contacts and columns with noncollecting contacts. Another, introduced here, operates on a charge sharing principle and establishes both rows and columns with collecting contacts on the anode surface. In previous work using the earlier strip detector concept we reported simulations and measurements of energy and spatial resolution for prototype 5- and 10-mm-thick CZT detectors. We now present the results of detection efficiency and uniformity measurements conducted on 5-mm-thick detectors using a specific configuration of the front-end electronics and event trigger. We discuss the importance of the detector fabrication processes when implementing this approach

    Realistic assumptions about spatial locations and clustering of premises matter for models of foot-and-mouth disease spread in the United States

    Get PDF
    Spatially explicit livestock disease models require demographic data for individual farms or premises. In the U.S., demographic data are only available aggregated at county or coarser scales, so disease models must rely on assumptions about how individual premises are distributed within counties. Here, we addressed the importance of realistic assumptions for this purpose. We compared modeling of foot and mouth disease (FMD) outbreaks using simple randomization of locations to premises configurations predicted by the Farm Location and Agricultural Production Simulator (FLAPS), which infers location based on features such as topography, land-cover, climate, and roads. We focused on three premises-level Susceptible-Exposed-Infectious-Removed models available from the literature, all using the same kernel approach but with different parameterizations and functional forms. By computing the basic reproductive number of the infection (R0) for both FLAPS and randomized configurations, we investigated how spatial locations and clustering of premises affects outbreak predictions. Further, we performed stochastic simulations to evaluate if identified differences were consistent for later stages of an outbreak. Using Ripley's K to quantify clustering, we found that FLAPS configurations were substantially more clustered at the scales relevant for the implemented models, leading to a higher frequency of nearby premises compared to randomized configurations. As a result, R0 was typically higher in FLAPS configurations, and the simulation study corroborated the pattern for later stages of outbreaks. Further, both R0 and simulations exhibited substantial spatial heterogeneity in terms of differences between configurations. Thus, using realistic assumptions when de-aggregating locations based on available data can have a pronounced effect on epidemiological predictions, affecting if, where, and to what extent FMD may invade the population. We conclude that methods such as FLAPS should be preferred over randomization approaches

    Readout and performance of thick CZT strip detectors with orthogonal coplanar anodes

    Get PDF
    We report progress in the study of CZT strip detectors featuring orthogonal coplanar anode contacts. The work includes laboratory and simulation studies aimed at optimizing and developing compact, efficient, high performance detector modules for 0.05 to 1 MeV gamma radiation measurements. The novel coplanar anode strip configuration retains many of the performance advantages of pixel detectors yet requires far fewer electronic channels to perform both 3-d imaging and spectroscopy. We report on studies aimed at determining an optimum configuration of the analog signal processing electronics to employ with these detectors. We report measurements of energy and spatial resolution in three dimensions for prototype 5 and 10 mm thick CZT detectors using a set of shaping and summing amplifiers

    Development of CZT strip detector modules for 0.05- to 1-MeV gamma-ray imaging and spectroscopy

    Get PDF
    We report progress in our study of cadmium zinc telluride (CZT) strip detectors featuring orthogonal coplanar anode contacts. We specifically report on the performance, characterization and stability of 5 and 10 mm thick prototype CZT detectors fabricated using material from several manufacturers. Our ongoing work includes laboratory and simulation studies aimed at optimizing and developing compact, efficient, high performance detector modules for 0.05 to 1 MeV gamma radiation measurements with space-based instrumentation. The coplanar anode strip configuration retains many of the performance advantages of pixel detectors yet requires far fewer electronic channels to perform both 3-d imaging and spectroscopy. Minimizing the channel count is important for large balloon or space instruments including coded aperture telescopes (such as MARGIE or EXIST) and Compton imaging telescopes (such as TIGRE or ACT). We also present plans for developing compact, space qualified imaging modules designed for integration into closely packed large area detector arrays. We discuss issues associated with detector module and array electronics design and development

    Improving Hearing Screenings with Tele-Otology

    Get PDF
    Introduction: The Lions Hearing Center of Michigan (LHC-MI) is an assistance program in Detroit that provides hearing aids to individuals in need. LHC-MI has provided thousands of hearing aids, but such efforts have been costly, requiring patients to make multiple appointments at multiple locations. To streamline this process, the LHC-MI is piloting a new program, titled “Hear Now! Detroit!”, that uses telemedicine to reach patients at community sites. Purpose: To evaluate the feasibility of a hearing screening program that uses telemedicine to reduce the number of visits required to acquire hearing aids. Methods: Teams of community volunteers were deployed to several hearing screening sites. 69 patients were pre-screened for hearing loss using a mobile screening audiometer (ES3S, Micro Audiometrics). 23 patients were recommended to proceed with further screening using an interactive iPad Audiometer (Audiometry Pro, SHOEBOX) and digital video otoscope (DE500, Firefly Global). Digital audiograms and video otoscope recordings were sent to a physician who assessed the recordings for quality and used the findings to perform clinical assessments. Participants were surveyed to assess for satisfaction. Results: All video otoscope clips received an “acceptable” or better grade for clinical assessability. All patients who received all three screening tests reported an overall satisfaction rating of 5 out of 5. 16 of the 23 pre-screened participants were found to be good candidates for hearing aids without requiring in-person evaluation. Conclusions: “Hear Now! Detroit!” is a feasible hearing screening model with high patient and provider satisfaction that expedites the process of acquiring hearing aids
    • 

    corecore