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Single-Sided CZT Strip Detectors

John R. Macri, Member, IEEE, Louis-Andre Hamel, Manuel Julien, Richard S. Miller, Burcin Donmez,
Mark L. McConnell, James M. Ryan, and Mark Widholm

Abstract—We report progress in the study of thick CZT strip
detectors for 3-D imaging and spectroscopy and discuss two
approaches to device design. Unlike double-sided strip detectors,
these devices feature both row and column contacts implemented
on the anode surface. This electron-only approach circumvents
problems associated with poor hole transport in CZT that nor-
mally limit the thickness and energy range of double-sided strip
detectors. The work includes laboratory and simulation studies
aimed at developing compact, efficient, detector modules for 0.05
to 1 MeV gamma radiation measurements while minimizing the
number and complexity of the electronic readout channels. These
devices can achieve similar performance to pixel detectors for both
3-D imaging and spectroscopy. The low channel count approach
can significantly reduce the complexity and power requirements
of the readout electronics. This is particularly important in
applications requiring large area detector arrays. We show two
single-sided strip detector concepts. One, previously reported,
features rows established with collecting contacts and columns
with noncollecting contacts. Another, introduced here, operates on
a charge sharing principle and establishes both rows and columns
with collecting contacts on the anode surface. In previous work
using the earlier strip detector concept we reported simulations
and measurements of energy and spatial resolution for prototype
5- and 10-mm-thick CZT detectors. We now present the results
of detection efficiency and uniformity measurements conducted
on 5-mm-thick detectors using a specific configuration of the
front-end electronics and event trigger. We discuss the importance
of the detector fabrication processes when implementing this
approach.

Index Terms—CdZnTe, CZT, gamma-ray, strip detectors.

I. TwWO SINGLE-SIDED STRIP DETECTOR CONCEPTS

Figs. 1 and 2 illustrate the anode patterns for two approaches
to single-sided strip detector design. Note that the guard ring
electrode surrounding these anode patterns and the cathode con-
tacts on the opposite sides are not shown.

The first single-sided strip detector concept and its construc-
tion were described previously [1], [2]. Fig. 1 illustrates the
anode contact pattern. The 8 row X 8 column pattern forms 64
1-mm? unit cells. There is a 200-pm-diameter pixel contact pad
at the center of each unit cell. The metallic contacts are shown
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Fig. 1. Single-sided strip detector with collecting (row) and noncollecting
(column) contacts on the anode surface.
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Fig.2. Single-sided charge-sharing strip detector (left). Unit cells (right) show
interconnections.

in gray and black. Gaps between contact electrodes are 200 pm,
A signal from each interconnected pixel row provides the event
trigger as well as the energy and y coordinate. A signal from
each orthogonal strip, biased between cathode and pixel row po-
tentials, provides the x and z coordinates. For optimum perfor-
mance, this approach requires that the orthogonal strip contacts
collect no charge but register the motions of electrons as they
are collected on the pixels.

The second concept is a single-sided charge-sharing strip de-
tector. Fig. 2 shows the anode pattern and two 1-mm unit cells
(expanded, right) to illustrate pad interconnections. Unit cells
contain an array of closely packed anode contact pads in two
groups (gray and black in this illustration). The two groups are
identically biased for charge collection but are interconnected

0018-9499/04$20.00 © 2004 IEEE
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Fig. 3.
nonuniform image response (strip column 6, pixel row 5).

in columns or rows in the layers of the carrier substrate. A non-
collecting grid electrode, biased between pixel pad and cathode
potentials, provides a signal that can be used for measuring the
depth of interaction, the z coordinate. The principle of operation
requires sharing of the electron charge between row and column
electrodes for each event. This is feasible when the lateral extent
of the electron cloud exceeds the pitch of the anode pads. This
approach takes advantage of the increasing capability of manu-
facturers to interconnect fine features of anode contact patterns
with the carrier substrates. Interconnections, shown schemati-
cally in the both figures, are implemented on the layers of the
carrier substrates.

II. StATUS

Prototype devices employing the first approach (Fig. 1) have
been built and tested. Spectroscopy, imaging and relative effi-
ciency results for several devices were reported previously [1],
[3]. Energy resolution (FWHM) at 60, 122, and 662 keV as
good as 6%, 3%, and 1%, respectively and submillimeter po-
sition resolution in three dimensions down to 60 keV have been
demonstrated with 5-mm-thick detectors. We have also demon-
strated relative detection efficiencies as expected throughout the
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Reconstructed images at four slit collimator locations. Top panels illustrate relatively uniform image response. Lower panels illustrate a region of

detector thickness. Significant variations in performance, how-
ever, have been observed between detector samples and within
the active volumes of individual detectors. New measurements
assessing detection efficiency and uniformity of response are re-
ported below. Prototypes employing the new approach (Fig. 2)
are in the design phase.

III. UNIFORMITY AND EFFICIENCY MEASUREMENTS

A single detector, ID UNH-EV-3, was selected for the labora-
tory studies reported in this section. This 5-mm-thick detector,
procured in 1999, was chosen from among the early prototype
devices for its relatively uniform spectroscopic and imaging per-
formance [3].

Any of the 8-pixel-row signals exceeding its independent dis-
criminator’s threshold triggers acquisition of 19 pulse heights
(8 pixel rows, 8 strip columns, cathode, guard ring, and strip
sum) for the event. A shaping time of 1 us is used except for the
strip column signals where a faster (200 ns) shaping helps to
extract the signal used to measure the = coordinate. We studied
the imaging and triggering uniformity of this detector by scan-
ning the entire cathode surface in 0.5-mm steps with collimated
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Fig. 4. Trigger rate maps from scan of 8 X 8 mm imaging region with 1-mm-diameter beam spot from collimated 37 Co source (a) using pixel row trigger and
(b) using cathode trigger.
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photons from a °”Co source. Both a 1-mm-wide slit collimator
and a 1-mm-diameter beam spot collimator were employed. We
determined in an independent measurement using a 1.5-in-thick
Nal(T1) detector that ~82 photons/s (122 and 136 keV) are inci-
dent on the detector through the spot collimator. The pixel row
trigger level was set at ~60 keV.

Rows and columns in our 8 x 8 prototype detectors are num-
bered O through 7. Event locations computed using interpola-
tion of the recorded pulse heights, are shown for four orienta-
tions and positions of the slit collimator (Fig. 3). The y position
is more quantized than the x position because, unlike for the
column electrodes, there is very little charge sharing among ad-
jacent pixel rows with this design. Relatively uniform images of
the slit are obtained for most collimator locations such as those
shown in the upper panels. The lower panels, however, reveal
a region at strip column 6, pixel row 5 where photons, while
detected, are registered in adjacent locations. This is the only
“pixel” or row—column intersection of the 64 “pixel” imaging
region for which the event locations are in error by more than
1 mm.

The spot collimator was used to scan the 8 X 8 mm imaging
region. A map of the measured trigger rate for each spot location
is shown in Fig. 4(a). The average trigger rate from the source,
65/s, is less than expected (~82/s). It varies by 136% peak to
peak, 28% (1 — o). A pronounced dip in the trigger rate can be
seen along strip column 1 [Fig. 4(a)]. The maximum trigger rate
measured, 99/s, corresponds to strip column 3, pixel row 4.

To help identify the sources of trigger nonuniformity, we
made a similar scan with the spot collimator (I-mm steps)
using the cathode signal to provide the trigger. The response is
much more uniform [Fig. 4(b)]. The average trigger rate, 81/s,
is consistent with expectations. It varies by 20% peak-to-peak,
4% (1 — o). This indicates that anode contact nonuniformity
and mismatches of the pixel row trigger channels are more
likely sources of this nonuniformity than is the bulk material.

Spectroscopic analysis of the beam spot data was employed
to help identify one source of response nonuniformity—strip
column charge collection. Fig. 5 shows spectra (top) and scatter
plots (bottom) of strip column (x axis) versus pixel row (y axis)
pulse height for two positions of the ”Co spot collimator.

The best spectral performance is achieved for photons inci-
dent on strip column 3, pixel row 4 (left). Note that this is the
location where the maximum trigger rate was registered in the
beam spot scan (Fig. 4, left). The worst spectrum is seen for pho-
tons incident at strip column 1, pixel row 6 (right). This is the
location of the depression in the trigger rate map (Fig. 4, left).
To assess the extent of strip column charge collection in these
cases the strip column signals were processed using the same
shaping and polarity as is used for the pixel rows. The scatter
plot (lower right) confirms that the low measurement of energy
for most events is the result of a significant portion of the ioniza-
tion charge being collected on the “noncollecting” strip column
electrode in this region. The effect is independent of the depth of
interaction (z). We feel it is the result of inadequate control and
nonuniform application of the surface preparation, patterning,
and bonding processes.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 5, OCTOBER 2004

T

0.06

=

=

-
T

Z.=40mm

=
T
k

amplitude (V)

002 L1

0.075

0.05

Z.=35mm

0.028

!
'i

L B B

||\|I||\|[||7|7\||7|77|\7|7177\|\|

0.06 F

T

0.04

T

0.02

=
'l
¥

T R A R R

RN B R |

0.1 0.2 03 04 05

time (ps)

T

&
=
L F
[—J
—_
=

Fig. 6. Measured and simulated pixel row and strip column signals at various
depths of interaction. The strip column signals are smaller and bipolar in nature.

IV. SIGNAL-PROCESSING REQUIREMENTS

Charge collection on the strip columns is a significant factor
in reducing the level of the pixel row trigger signal. Nonuni-
formity of charge collection further complicates the situation.
Charge collection on the strip columns also affects the ability to
measure the x coordinate of the interaction.

Pixel row and strip column signals (relative units) are shown
for various interaction depths in Fig. 6. Even with effective
noncollecting electrodes, the smaller, bipolar, strip column
signals present the most challenging set of front-end electronics
requirements. These smaller signals, typically 25% of the
collecting signals, effectively define the lower energy threshold
by limiting the ability to measure the x coordinate of the
interaction.

A shaping time of 200 ns was selected to process the strip
column signals. This selection is effective in measuring a fea-
ture of these signals that is common for interactions at any depth,
the falling edge that occurs when electrons are collected on the
nearest pixel contact. Any charge collection on the strip columns
reduces this component of the signal thus limiting the ability to
measure the = coordinate of the interaction. Nonuniformity of
charge collection on strip columns across the detector increases
the difficulty when applying this technique. Another consid-
eration is the difficulty associated with finding or developing
a low-noise, low-power front-end ASIC with 200 ns shaping
constant.
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prototype detector.

V. IMPROVED FABRICATION AND PERFORMANCE

Two new 5S-mm-thick prototype detectors with this anode pat-
tern have been recently evaluated. These detectors were fab-
ricated using eV Products’ coplanar grid (CPG) materials and
processes. CPG spectrometer detectors, like the imaging detec-
tors discussed here, in order to perform well, require both col-
lecting and effective noncollecting contacts on the anode surface
[4].

The first test results are encouraging and indicate significantly
less charge collection on the “noncollecting” electrodes. A spec-
trum from flood illumination of detector UNH-EV-14 with pho-
tons from a ®"Co source is shown in Fig. 7. Note that this is a
composite spectrum of all 64 “pixels” of the detector without
any event selection or correction for interaction depth. The mea-
sured energy resolution (FWHM) at 122 keV is 6.8 keV. This is
the most uniform spectral response we have recorded to date
with one of these detectors. Further tests will evaluate the 3-D
imaging and detection efficiency capabilities as well as response
uniformity.

The goal with these new prototypes was to identify a con-
trolled process that we can use to further develop this and other
single-sided strip detector designs with increased confidence.
The capability to fabricate significantly more uniform devices
having effective noncollecting electrodes was an important step.
The new design discussed below was largely motivated by a de-
sire for a simplified set of signal-processing requirements for
the front-end electronics.

VI. CHARGE-SHARING STRIP DETECTOR DESIGN

A. Advantages and Disadvantages

The single-sided charge-sharing strip detector design (Fig. 2)
addresses some of the limitations encountered with the earlier
design (Fig. 1). The front-end electronics implementation is
simplified, particularly with respect to processing the bipolar
strip column signals (Fig. 6) from the earlier design. Unlike the
previous design, charge collecting signals are used for the x as
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Fig. 8. Electron range in CZT.

well as the y coordinate measurement. Polarities and shaping
times can be the same for column and row channels. While
both column and row signals will be reduced on average to
half the total collected charge, the size of the noncollecting
strip column signal in the previous design was only one fourth
the size and required faster and noisier circuitry. In addition,
the large area covered by the grid electrode results in greater
depth dependence of the noncollecting grid signal than was
available from the individual strip column electrodes in the
earlier design. See the simulation section below.

There are disadvantages as well. In this new design, column
and row signals must be added to measure the energy. This will
degrade the achievable energy resolution by a factor related to
the electronic noise on each channel. The capacitance between
the z and y strips due the compact pad and interconnect struc-
ture will also increase the noise. We anticipate, however, that
the flexibility afforded to ASIC selection will result in minimal
impact here. We anticipate, however, that limited charge sharing
due to the small size of the electron cloud at low energies will,
for some events, result in the measurement of only one of the
two lateral components and will, at least for the first prototype
detectors, be a stronger determinant of the effective threshold
than the signal size itself.

B. Size of the Charge Cloud

The size of the electron cloud reaching the anode for any
given interaction depends on the type of interaction, the energy
of the photoelectron or Compton electron, the depth of inter-
action, and the electric field [5]. The range of a photoelectron
in CZT is shown in Fig. 8, [6]. These values represent opti-
mistic estimates of the extent of the electron cloud, as ionization
charges are not uniformly distributed along this range. Further
study is required to better understand the extent of the charge
distribution. Diffusion of the charge cloud as it moves toward the
anode surface will help. The rms radius of the carrier distribu-
tion increases as v/ time; thus the actual size of the charge cloud
at the collection plane increases as \/depth where the depth is
measured from the anode. At a bias of 1000 V over a 1-cm-thick
detector, charge concentrated at a point will spread, due to dif-
fusion alone, to a radius of 100 xm when the interaction occurs
at the cathode. Lower energy photons will interact nearer the
cathode surface somewhat compensating for the small initial ex-
tent of the charge cloud. The K X-ray produced in photoelectric
events will also increase the extent of the charge distribution,
particularly at lower energies. Its mean free path is 85 pm.
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Fig. 9. Unit cells of two charge-sharing strip detectors with a
250-pgm-diameter charge cloud projected on the anode. (a) Currently
reasonable feature size. (b) Manufacturing goal.

The effective threshold for having sufficient shared signal
to measure both the x and y coordinates will depend on the
electronic noise and the feature size of the anode pattern. A
250-pm-diameter charge cloud is shown projected on two ex-
panded unit cell anode patterns of detectors featuring different
pad and gap sizes to illustrate how small feature size will im-
prove the charge sharing (Fig. 9). We anticipate that our first
prototype detectors will feature 100-um pads and gaps and that
the effective threshold will be ~150 keV. A 50-keV threshold
should be possible if manufacturers can fabricate and bond de-
tectors with 20-pm pads and gaps, the goal with eV Products’
bonding technology development effort.

C. Demonstration of Imaging Using Charge Sharing

A laboratory demonstration of 3-D imaging in a charge-
sharing configuration was conducted using a prototype detector
of the earlier design (Fig. 1). The detector was operated in
a modified bias and signal-processing configuration for this
demonstration. The pixel rows and the strip columns were
identically biased for electron collection. The row and column
shaping amplifiers were identically set for gain, shaping time,
and polarity. A collimated beam (200-m diameter) of photons
from a ®”Co source, incident on the cathode surface (z = 0),
was directed at the center of a unit cell, the 200-pm pixel row
contact pad. The cathode signal was used to trigger acquisition
of event data. The largest signal for most events was recorded
on the pixel row corresponding to the beam spot location.

The image of this beam spot (Fig. 10) was formed using
events for which at least 10% of the signal was registered on
a strip column electrode. This was 46% of the total number of
triggered events. The event location (z,y) was determined for
each event by the weighted average of the row and column sig-
nals. The z coordinate for each event was computed using the
ratio of the cathode to anode sum pulse heights. The sum of row
and column pulse heights was used to make the energy measure-
ment. The measured energy resolution (FWHM) at 122 keV was
9.9 keV.

This imaging and spectroscopy capability is possible because
a significant portion of the charge signal is shared across the
200-pm gap that separates the pixel row from the surrounding
strip column electrode. It represents a feasibility demonstration
of the charge-sharing strip detector design concept for anodes
having 200-pm feature sizes.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 5, OCTOBER 2004

Fig. 10. Image of collimated beam of 122-keV photons formed using row and
column charge sharing.
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Fig. 11. [Illustration of how 50:50 charge sharing and pulse-height
measurements can resolve multihit ambiguity.

D. Resolving Multi-Hit Events

The ambiguity associated with identifying the true locations
of multiple Compton interactions (multihits) in strip detectors
is illustrated in Fig. 11. In this example, interactions at points A
and B could be interpreted as having occurred at C and D unless
there is some mechanism to associate the row with the column
for each hit. Independent measurements of the arrival time of
both column and row signals can be effective unless the inter-
actions occur at the same depth (Z). If, however, feature sizes
can be made small enough to achieve 50:50 row:column charge
sharing, pulse height information can be used to eliminate this
ambiguity. A and B would be identified as the true locations in
this example as column, row (2, 7) and (6, 3) record the same
pulse height.

VII. CHARGE-SHARING STRIP DETECTOR SIMULATIONS

Simulations of the single-sided charge-sharing strip detector
(Fig. 2) were conducted at the University of Montreal. The po-
tential across a 1-mm-wide unit cell under the first millimeter of
a 10-mm-thick detector is shown in the top of Fig. 12. The anode
pad bias is 1175 V. The grid bias is 1150 V. On the bottom is the
weighting potential of one of the rows or columns. These plots
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Fig. 12.  Simulation of a 10-mm-wide unit cell for the first millimeter near the
anode of a 10-mm-thick detector. Potential of unit cell (top). Weighting potential
of one row or column (bottom).

indicate uniform fields in the bulk, the focusing effect of the
grid electrode and that the advantages of the small pixel effect
apply in this case. Simulated detector signals at various interac-
tion depths (Fig. 13) from the charge transport and signal gen-
eration simulation are shown for one row or column (top) and
for the depth sensing grid (bottom). The pulse height of signals
is shown as a percentage of the unit charge deposited.

The simulation assumes 50:50 sharing between rows and
columns of the charge signal reaching the anode surface. The
simulation of row or column signals indicates little need for a
depth of interaction correction of the energy measurement. The
simulation of the depth sensing grid signal suggests that appli-
cation of a long shaping time will be effective in establishing a
measure of the depth of interaction independent of the cathode
signal. Shaping times of 2 and 8 ;1s were simulated for the depth
sensing grid signals at various interaction depths (Fig. 14). A
signal-to-noise trade study is required to find an optimized
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Fig. 14. Simulated depth sensing grid signals, relative units: 2 ps shaping
(top); 8 s (bottom).

solution. The capibility to determine interaction depth without
the cathode signal is an advantage in closely packed arrays.
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VIII. CONCLUSION AND FUTURE WORK

Our goal is to develop and demonstrate mature designs for
compact, efficient, high-performance CZT strip detectors for
imaging and spectroscopy in the 0.05—1-MeV energy range and
be ready to employ them in large-area detector arrays when large
volumes of suitable CZT material with uniform properties be-
come available and affordable. With this goal in mind, we are
developing two single-sided strip detector designs.

We have demonstrated good spectroscopic, imaging and,
now, detection efficiency performance with a prototype
5-mm-thick orthogonal coplanar anode strip detector and
identified several factors that limit its performance. Good fabri-
cation process control is required to achieve uniform response.
While a reasonable approach employing 200-ns shaping has
been demonstrated, implementation of the front-end electronics
for processing the noncollecting strip column signal as an ASIC
remains a concern.

We have introduced a new detector design, the single-sided
charge-sharing strip detector, that will have a more straight-for-
ward electronics implementation. In addition, the peformance of

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 5, OCTOBER 2004

detectors employing this approach will improve with anode fea-
ture size technology.
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