91 research outputs found

    The diffusion-induced nova scenario. CK Vul and PB 8 as possible observational counterparts

    Get PDF
    We propose a scenario for the formation of DA white dwarfs with very thin helium buffers. For these stars we explore the possible occurrence of diffusion-induced CNO- flashes, during their early cooling stage. In order to obtain very thin helium buffers, we simulate the formation of low mass remnants through an AGB final/late thermal pulse (AFTP/LTP scenario). Then we calculate the consequent white dwarf cooling evolution by means of a consistent treatment of element diffusion and nuclear burning. Based on physically sounding white dwarf models, we find that the range of helium buffer masses for these diffusion-induced novas to occur is significantly smaller than that predicted by the only previous study of this scenario. As a matter of fact, we find that these flashes do occur only in some low-mass (M < 0.6M) and low metallicity (Z_ZAMS <0.001) remnants about 10^6 - 10^7 yr after departing from the AGB. For these objects, we expect the luminosity to increase by about 4 orders of magnitude in less than a decade. We also show that diffusion-induced novas should display a very typical eruption lightcurve, with an increase of about a few magnitudes per year before reaching a maximum of M_V ~ -5 to -6. Our simulations show that surface abundances after the outburst are characterized by logNH/NHe ~ -0.15...0.6 and N>C>O by mass fractions. Contrary to previous speculations we show that these events are not recurrent and do not change substantially the final H-content of the cool (DA) white dwarf. (Abridged)Comment: 16 pages, 8 figures, 3 tables. Replaced to match the final version published by MNRAS. The definitive version is available at http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291365-296

    The born again (VLTP) scenario revisited: The mass of the remnants and implications for V4334 Sgr

    Get PDF
    We present 1-D numerical simulations of the very late thermal pulse (VLTP) scenario for a wide range of remnant masses. We show that by taking into account the different possible remnant masses, the observed evolution of V4334 Sgr (a.k.a. Sakurai's Object) can be reproduced within the standard 1D-MLT stellar evolutionary models without the inclusion of any adhocad-hoc reduced mixing efficiency. Our simulations hint at a consistent picture with present observations of V4334 Sgr. From energetics, and within the standard MLT approach, we show that low mass remnants \hbox{(M0.6M\lesssim0.6\msun)} are expected to behave markedly different than higher mass remnants \hbox{(M0.6M\gtrsim0.6\msun)} in the sense that the latter are not expected to expand significantly as a result of the violent H-burning that takes place during the VLTP. We also assess the discrepancy in the born again times obtained by different authors by comparing the energy that can be liberated by H-burning during the VLTP event.Comment: Submitted to MNRAS. In includes an appendix regarding the treatment of reduced convective motions within the Mixing Length Theor

    Planetary Nebulae in the Magellanic Clouds: II) Abundances and element production

    Get PDF
    We present the second part of an optical spectroscopic study of planetary nebulae in the LMC and SMC. The first paper, Leisy & Dennefeld (1996), discussed the CNO cycle for those objects where C abundances were available. In this paper we concentrate more on other elemental abundances (such as O, Ne, S, Ar) and their implications for the evolution of the progenitor stars. We use a much larger sample of 183 objects, of which 65 are from our own observations, where the abundances have been re-derived in a homogeneous way. For 156 of them, the quality of data is considered to be satisfactory for further analysis. We confirm the difficulty of separating Type-I and non-type-I objects in the classical He-N/O diagram, as found in Paper I, a problem reinforced by the variety of initial compositions for the progenitor stars. We observed oxygen variations, either depletion via the ON cycle in the more massive progenitor stars, or oxygen production in other objects. Neon production also appears to be present. These enrichments are best explained by fresh material from the core or from burning shells, brought to the surface by the 3rd dredge-up, as reproduced in recent models, some including overshooting. All the effects appear stronger in the SMC, suggesting a higher efficiency in a low metallicity environment. Neither oxygen nor neon can therefore be used to derive the initial composition of the progenitor star: other elements not affected by processing such as sulfur, argon or, if observed, chlorine, have to be preferred for this purpose. Some objects with very low initial abundances are detected, but on average, the spatial distribution of PNe abundances is consistent with the history of star formation (SF) as derived from field stars in both Clouds.Comment: 22 pages, 28 figures, Accepted for publication in Astronomy & Astrophysic

    Asteroseismological constraints on the coolest GW Vir variable star (PG 1159-type)PG 0122+200

    Get PDF
    We present an asteroseismological study on PG 0122+200, the coolest known pulsating PG1159 (GW Vir) star. Our results are based on an augmented set of the full PG1159 evolutionary models recently presented by Miller Bertolami & Althaus (2006). We perform extensive computations of adiabatic g-mode pulsation periods on PG1159 evolutionary models with stellar masses ranging from 0.530 to 0.741 Msun. We derive a stellar mass of 0.626 Msun from a comparison between the observed period spacing and the computed asymptotic period spacing, and a stellar mass of 0.567 Msun by comparing the observed period spacing with the average of the computed period spacing. We also find, on the basis of a period-fit procedure, an asteroseismological model representative of PG 0122+200 which is able to reproduce the observed period pattern with an average of the period differences of 0.88 s. The model has an effective temperature of 81500 K, a stellar mass of 0.556 Msun, a surface gravity log g= 7.65, a stellar luminosity and radius of log(L/Lsun)= 1.14 and log(R/Rsun)= -1.73, respectively, and a He-rich envelope thickness of Menv= 0.019 Msun. We derive a seismic distance of about 614 pc and a parallax of about 1.6 mas. The results of the period-fit analysis carried out in this work suggest that the asteroseismological mass of PG 0122+200 could be 6-20 % lower than thought hitherto and in closer agreement (to within 5 %) with the spectroscopic mass. This result suggests that a reasonable consistency between the stellar mass values obtained from spectroscopy and asteroseismology can be expected when detailed PG1159 evolutionary models are considered.Comment: 10 pages, 6 figures. To be published in Astronomy & Astrophysic

    The population of close double white dwarfs in the Galaxy

    Get PDF
    We present a new model for the Galactic population of close double white dwarfs. The model accounts for the suggestion of the avoidance of a substantial spiral-in during mass transfer between a giant and a main-sequence star of comparable mass and for detailed cooling models. It agrees well with the observations of the local sample of white dwarfs if the initial binary fraction is close to 50% and an ad hoc assumption is made that white dwarfs with mass less than about 0.3 solar mass cool faster than the models suggest. About 1000 white dwarfs brighter than V=15 have to be surveyed for detection of a pair which has total mass greater than the Chandrasekhar mass and will merge within 10 Gyr.Comment: 15 pages, 7 figures, to appear in Proc. ``The influence of binaries on stellar population studies'', Brussels, August 2000 (Kluwer, D. Vanbeveren ed.

    On the robustness of H-deficient post-AGB tracks

    Get PDF
    We analyze the robustness of H--deficient post--AGB tracks regarding previous evolution of their progenitor stars and the constitutive physics of the remnants. Our motivation is a recent suggestion of Werner & Herwig (2006) that previous evolution should be important in shaping the final post--AGB track and the persisting discrepancy between asteroseismological and spectroscopical mass determinations. This work is thus complementary to our previous work (Miller Bertolami & Althaus 2006) and intends to shed some light on the uncertainty behind the evolutionary tracks presented there. We compute full evolutionary models for PG1159 stars taking into account different extramixing (overshooting) efficiencies and lifetimes on the TP-AGB during the progenitor evolution. We also assess the effect of possible differences in the opacities and equation of state by artificially changing them before the PG1159 stage. Also comparisons are made with the few H-deficient post--AGB tracks available in the literature. Contrary to our expectations, we found that previous evolution is not a main factor in shaping H--deficient post--AGB tracks. Interestingly enough, we find that only an increase of 50\sim50% in the intershell opacities at high effective temperatures may affect the tracks as to reconcile spectroscopic and asteroseismologic mass determinations. This forces us to conclude that our previous tracks (Miller Bertolami & Althaus 2006) are robust enough as to be used for spectroscopic mass determinations, unless opacities in the intershell region are substantially different. Our results, then, call for an analysis of possible systematics in the usually adopted asteroseismological mass determination methods.Comment: Accepted for publication in Astronomy and Astrophysc

    Dairy Intake and Acne Vulgaris:A Systematic Review and Meta-Analysis of 78,529 Children, Adolescents, and Young Adults

    Get PDF
    A meta-analysis can help inform the debate about the epidemiological evidence on dairy intake and development of acne. A systematic literature search of PubMed from inception to 11 December 2017 was performed to estimate the association of dairy intake and acne in children, adolescents, and young adults in observational studies. We estimated the pooled random effects odds ratio (OR) (95% CI), heterogeneity (I2-statistics, Q-statistics), and publication bias. We included 14 studies (n = 78,529; 23,046 acne-cases/55,483 controls) aged 7&ndash;30 years. ORs for acne were 1.25 (95% CI: 1.15&ndash;1.36; p = 6.13 &times; 10&minus;8) for any dairy, 1.22 (1.08&ndash;1.38; p = 1.62 &times; 10&minus;3) for full-fat dairy, 1.28 (1.13&ndash;1.44; p = 8.23 &times; 10&minus;5) for any milk, 1.22 (1.06&ndash;1.41; p = 6.66 &times; 10&minus;3) for whole milk, 1.32 (1.16&ndash;1.52; p = 4.33 &times; 10&minus;5) for low-fat/skim milk, 1.22 (1.00&ndash;1.50; p = 5.21 &times; 10&minus;2) for cheese, and 1.36 (1.05&ndash;1.77; p = 2.21 &times; 10&minus;2) for yogurt compared to no intake. ORs per frequency of any milk intake were 1.24 (0.95&ndash;1.62) by 2&ndash;6 glasses per week, 1.41 (1.05&ndash;1.90) by 1 glass per day, and 1.43 (1.09&ndash;1.88) by &ge;2 glasses per day compared to intake less than weekly. Adjusted results were attenuated and compared unadjusted. There was publication bias (p = 4.71 &times; 10&minus;3), and heterogeneity in the meta-analyses were explained by dairy and study characteristics. In conclusion, any dairy, such as milk, yogurt, and cheese, was associated with an increased OR for acne in individuals aged 7&ndash;30 years. However, results should be interpreted with caution due to heterogeneity and bias across studies

    Observations of V838 Mon in the CO rotational lines

    Full text link
    We investigate the structure of a field around the position of V838 Mon as seen in the lowest CO rotational transitions. We also measure and analyse emission in the same lines at the position of V838 Mon.Observations have primarily been done in the CO J = 2-1 and J = 3-2 lines using the KOSMA telescope. A field of 3.4 squared degrees has been mapped in the on-the-fly mode in these transitions. Longer integration spectra in the on-off mode have been obtained to study the emission at the position of V838 Mon. Selected positions in the field have also been observed in the CO J = 1-0 transition using the Delingha telescope.In the observed field we have identified many molecular clouds. They can be divided into two groups from the point of view of their observed radial velocities. One, having V(LSR) in the range 18-32 km/s, can be identified with the Perseus Galactic arm. The other one, having V(LSR) between 44-57 km/s, probably belongs to the Norma-Cygnus arm. The radial velocity of V838 Mon is within the second range but the object does not seem to be related to any of the observed clouds. We did not find any molecular buble of a 1 degree dimension around the position of V838 Mon claimed in van Loon et al. An emission has been detected at the position of the object in the CO J = 2-1 and J = 3-2 transitions. The emission is very narrow (FWHM ~ 1.2 km/s) and at V(LSR) = 53.3 km/s. Our analysis of the data suggests that the emission is probably extended.Comment: paper accepted in A&

    Thermohaline mixing and the photospheric composition of low-mass giant stars

    Get PDF
    We compute full evolutionary sequences of red giant branch stars close to the luminosity bump by including state of the art composition transport prescriptions for the thermohaline mixing regimes. In particular we adopt a self-consistent double-diffusive convection theory, that allows to handle the instabilities that arise when thermal and composition gradients compete against each other, and a very recent empirically motivated and parameter free asymptotic scaling law for thermohaline composition transport. In agreement with previous works, we find that during the red giant stage, a thermohaline instability sets in shortly after the hydrogen burning shell (HBS) encounters the chemical discontinuity left behind by the first dredge-up. We also find that the thermohaline unstable region, initially appearing at the exterior wing of the HBS, is unable to reach the outer convective envelope, with the consequence that no mixing of elements that produces a non-canonical modification of the stellar surface abundances occurs. Also in agreement with previous works, we find that by artificially increasing the mixing efficiency of thermohaline regions it is possible to connect both unstable regions, thus affecting the photospheric composition. However, we find that in order to reproduce the observed abundances of red giant branch stars close to the luminosity bump, thermohaline mixing efficiency has to be artificially increased by about 4 orders of magnitude from that predicted by recent 3D numerical simulations of thermohaline convection close to astrophysical environments. From this we conclude the chemical abundance anomalies of red giant stars cannot be explained on the basis of thermohaline mixing alone.Comment: 7 pages, 6 figures, accepted for publication in A&
    corecore