135 research outputs found

    The Effect of Gameplay on the Creative Self-Efficacy of Educators in Hypothetical Classroom Management Situations

    Get PDF
    In an ever-changing emotional, psychological, and physically developing world of education, it is important for educators to adapt creative skills to meet learners\u27 needs. It is paramount for educators to develop creative skills to meet the needs of their learners and demonstrate effective classroom management. There is a gap between preservice teacher preparation and the reality of the day-to-day demands of educators. Game-based learning can provide a measure to fill that gap by providing a simulated experience for preservice teachers to encounter possible challenging scenarios. This concept of educational gameplay uses interactive learning that can improve the classroom response to behavioral issues (Bada & Olusegun, 2015). Learning during play is a far superior form of training in that it stimulates multiple learning resources and can create connections that will last longer for most (Resnick, 2017). Educational games can spark creativity (Dyson et al., 2016) and enhance the preservice teacher learning experience (Johnson & Kim, 2021). This research asked how gameplay may affect the creative self-efficacy of educators in hypothetical classroom management situations. In this experimental design, a randomized cluster block was used to explore the impact on a self-report measure of creative self-efficacy before and after participants played a card game simulating challenging student behavior

    Virion-Associated Vpr Alleviates a Postintegration Block to HIV-1 Infection of Dendritic Cells

    Get PDF
    ABSTRACT Viral protein R (Vpr) is an HIV-1 accessory protein whose function remains poorly understood. In this report, we sought to determine the requirement of Vpr for facilitating HIV-1 infection of monocyte-derived dendritic cells (MDDCs), one of the first cell types to encounter virus in the peripheral mucosal tissues. In this report, we characterize a significant restriction of Vpr-deficient virus replication and spread in MDDCs alone and in cell-to-cell spread in MDDC-CD4 + T cell cocultures. This restriction of HIV-1 replication in MDDCs was observed in a single round of virus replication and was rescued by the expression of Vpr in trans in the incoming virion. Interestingly, infections of MDDCs with viruses that encode Vpr mutants unable to interact with either the DCAF1/DDB1 E3 ubiquitin ligase complex or a host factor hypothesized to be targeted for degradation by Vpr also displayed a significant replication defect. While the extent of proviral integration in HIV-1-infected MDDCs was unaffected by the absence of Vpr, the transcriptional activity of the viral long terminal repeat (LTR) from Vpr-deficient proviruses was significantly reduced. Together, these results characterize a novel postintegration restriction of HIV-1 replication in MDDCs and show that the interaction of Vpr with the DCAF1/DDB1 E3 ubiquitin ligase complex and the yet-to-be-identified host factor might alleviate this restriction by inducing transcription from the viral LTR. Taken together, these findings identify a robust in vitro cell culture system that is amenable to addressing mechanisms underlying Vpr-mediated enhancement of HIV-1 replication. IMPORTANCE Despite decades of work, the function of the HIV-1 protein Vpr remains poorly understood, primarily due to the lack of an in vitro cell culture system that demonstrates a deficit in replication upon infection with viruses in the absence of Vpr. In this report, we describe a novel cell infection system that utilizes primary human dendritic cells, which display a robust decrease in viral replication upon infection with Vpr-deficient HIV-1. We show that this replication difference occurs in a single round of infection and is due to decreased transcriptional output from the integrated viral genome. Viral transcription could be rescued by virion-associated Vpr. Using mutational analysis, we show that domains of Vpr involved in binding to the DCAF1/DDB1/E3 ubiquitin ligase complex and prevention of cell cycle progression into mitosis are required for LTR-mediated viral expression, suggesting that the evolutionarily conserved G 2 cell cycle arrest function of Vpr is essential for HIV-1 replication

    Prolonged viral replication and longitudinal viral dynamic differences among respiratory syncytial virus infected infants

    Get PDF
    © 2017 2017 International Pediatric Research Foundation, Inc. BackgroundLongitudinal respiratory syncytial virus (RSV) dynamics have not been well studied despite the existence of factors favoring prolonged RSV replication including high mutation rates allowing rapid evolution and potential escape from immune control. We therefore measured viral load in previously RSV-naive infants over prolonged time spans.MethodsDuring 2014-2015, quantitative nasal aspirates were collected from 51 RSV-PCR+ infants. Multiple parallel assessments of viral loads were quantified at each collected time point using a well-validated real-time quantitative reverse transcriptase polymerase chain reaction assay. After observing viral load rebound phenomenon in some infants, the viral dynamics of 27 infants with sufficient longitudinal viral load data points were analyzed using the pre-defined criteria for viral rebound. Additional analyses were performed comparing age with viral rebound, viral clearance rates, and viral load area-under-the-curve (AUC VL).ResultsThe 51 infants (303 nasal aspirate samples; mean of 5.9 per patient) exhibited slower than expected viral clearance. Lower age trended toward slower viral clearance and greater AUC VL. Six infants had detectable viral loads ≥1 month after symptom onset. Ten of twenty-seven evaluable subjects exhibited viral rebound and this rebound was age-dependent (P=0.0259). All but one rebounder were rebound; likely representing viral mutational immune escape

    Harmful Algal Blooms Threaten the Health of Peri-Urban Fisher Communities: A Case Study in Kisumu Bay, Lake Victoria, Kenya

    Get PDF
    Available guidance to mitigate health risks from exposure to freshwater harmful algal blooms (HABs) is largely derived from temperate ecosystems. Yet in tropical ecosystems, HABs can occur year-round, and resource-dependent populations face multiple routes of exposure to toxic components. Along Winam Gulf, Lake Victoria, Kenya, fisher communities rely on lake water contaminated with microcystins (MCs) from HABs. In these peri-urban communities near Kisumu, we tested hypotheses that MCs exceed exposure guidelines across seasons, and persistent HABs present a chronic risk to fisher communities through ingestion with minimal water treatment and frequent, direct contact. We tested source waters at eleven communities across dry and rainy seasons from September 2015 through May 2016. We measured MCs, other metabolites, physicochemical parameters, chlorophyll-a, phytoplankton abundance and diversity, and fecal indicators. We then selected four communities for interviews about water sources, usage, and treatment. Greater than 30% of source water samples exceeded WHO drinking water guidelines for MCs (1 µg/L), and over 60% of source water samples exceeded USEPA guidelines for children and immunocompromised individuals. 50% of households reported a sole source of raw lake water for drinking and household use, with alternate sources including rain and boreholes. Household chlorination was the most widespread treatment utilized. At this tropical, eutrophic lake, HABs pose a year-round health risk for fisher communities in resource -limited settings. Community-based solutions and site-specific guidance for Kisumu Bay and similarly impacted regions is needed to address a chronic health exposure likely to increase in severity and duration with global climate change

    Impacts of algal blooms and microcystins in fish on small-scale fishers in Winam Gulf, Lake Victoria: implications for health and livelihood

    Get PDF
    Lake Victoria, bordered by Kenya, Tanzania, and Uganda, provides one of the largest freshwater fisheries in the world and supports millions in small-scale fishing communities. Historical environmental change, including population growth, nutrient loading, introduced invasive species, and rising temperatures, has resulted in eutrophication and persistent cyanobacterial harmful algae blooms (cyanoHABs) over recent decades, particularly in the shallower gulfs, bays, and inlets. CyanoHABs impact fisheries and food web dynamics and compromise food and water security for nearshore fisher populations. In this study, we examine the socialecological impact of freshwater blooms on fisher health in one of these eutrophic regions, Winam Gulf in Lake Victoria. CyanoHABs persist for months and produce microcystins and hepatotoxins at levels unsafe for human health. We assessed potential risk and contribution of microcystin exposure through fish consumption, in addition to exposure through water source, and conducted 400 fisher and 400 household surveys. Average microcystin concentrations exceeded the World Health Organization (WHO) guideline for drinking water consistently during the long dry season, and cyanobacterial cell counts surpassed WHO standards for recreational risk in 84% of samples. Hazard quotients for fish consumed by young children were 5 to 10 times higher than permissible levels. In addition, fishers chronicled profound ecosystem changes with direct impact on livelihood, fisheries, and water quality with 77.4% reporting a decline in profit or catch, 83.1% reporting adverse impacts of cyanoHABs on fish in the lake, and 98.2% reporting indicators of declining water quality in the lake overall. Through the application of a social-ecological lens to a public health model, we identified spheres of influence that modify how fishers experience HABs related stressors and risks to provide a starting point at which to identify sustainable strategies to improve food and water security and livelihood for the millions in nearshore communities

    Hepatocyte membrane potential regulates serum insulin and insulin sensitivity by altering hepatic GABA release

    Get PDF
    Hepatic lipid accumulation in obesity correlates with the severity of hyperinsulinemia and systemic insulin resistance. Obesity-induced hepatocellular lipid accumulation results in hepatocyte depolarization. We have established that hepatocyte depolarization depresses hepatic afferent vagal nerve firing, increases GABA release from liver slices, and causes hyperinsulinemia. Preventing hepatic GABA release or eliminating the ability of the liver to communicate to the hepatic vagal nerve ameliorates the hyperinsulinemia and insulin resistance associated with diet-induced obesity. In people with obesity, hepatic expression of GABA transporters is associated with glucose infusion and disposal rates during a hyperinsulinemic euglycemic clamp. Single-nucleotide polymorphisms in hepatic GABA re-uptake transporters are associated with an increased incidence of type 2 diabetes mellitus. Herein, we identify GABA as a neuro-hepatokine that is dysregulated in obesity and whose release can be manipulated to mute or exacerbate the glucoregulatory dysfunction common to obesity

    The influence of tennis court surfaces on player perceptions and biomechanical response.

    Get PDF
    This study aimed to examine player perceptions and biomechanical responses to tennis surfaces and to evaluate the influence of prior clay court experience. Two groups with different clay experiences (experience group, n = 5 and low-experience group, n = 5) performed a 180° turning movement. Three-dimensional ankle and knee movements (50 Hz), plantar pressure of the turning step (100 Hz) and perception data (visual analogue scale questionnaire) were collected for two tennis courts (acrylic and clay). Greater initial knee flexion (acrylic 20. 8 ± 11.2° and clay 32.5 ± 9.4°) and a more upright position were reported on the clay compared to the acrylic court (P < 0.05). This suggests adaptations to increase player stability on clay. Greater hallux pressures and lower midfoot pressures were observed on the clay court, allowing for sliding whilst providing grip at the forefoot. Players with prior clay court experience exhibited later peak knee flexion compared to those with low experience. All participants perceived the differences in surface properties between courts and thus responded appropriately to these differences. The level of previous clay court experience did not influence players' perceptions of the surfaces; however, those with greater clay court experience may reduce injury risk as a result of reduced loading through later peak knee flexion

    Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations

    Get PDF
    The hydroxyl radical (OH) fuels tropospheric ozone production and governs the lifetime of methane and many other gases. Existing methods to quantify global OH are limited to annual and global-to-hemispheric averages. Finer resolution is essential for isolating model deficiencies and building process-level understanding. In situ observations from the Atmospheric Tomography (ATom) mission demonstrate that remote tropospheric OH is tightly coupled to the production and loss of formaldehyde (HCHO), a major hydrocarbon oxidation product. Synthesis of this relationship with satellite-based HCHO retrievals and model-derived HCHO loss frequencies yields a map of total-column OH abundance throughout the remote troposphere (up to 70% of tropospheric mass) over the first two ATom missions (August 2016 and February 2017). This dataset offers unique insights on near-global oxidizing capacity. OH exhibits significant seasonality within individual hemispheres, but the domain mean concentration is nearly identical for both seasons (1.03 ± 0.25 × 10^6 cm^(−3)), and the biseasonal average North/South Hemisphere ratio is 0.89 ± 0.06, consistent with a balance of OH sources and sinks across the remote troposphere. Regional phenomena are also highlighted, such as a 10-fold OH depression in the Tropical West Pacific and enhancements in the East Pacific and South Atlantic. This method is complementary to budget-based global OH constraints and can help elucidate the spatial and temporal variability of OH production and methane loss
    • …
    corecore