Cell Reports, Volume 35

Supplemental information

Hepatocyte membrane potential

regulates serum insulin and insulin

sensitivity by altering hepatic GABA release

Caroline E. Geisler, Susma Ghimire, Chelsea Hepler, Kendra E. Miller, Stephanie M. Bruggink, Kyle P. Kentch, Mark R. Higgins, Christopher T. Banek, Jun Yoshino, Samuel Klein, and Benjamin J. Renquist

1 Supplemental Data Titles and Legends

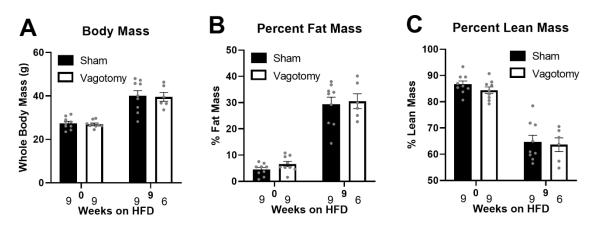
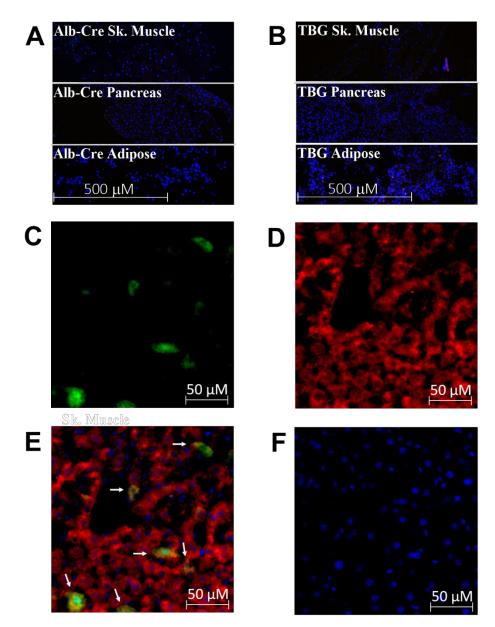



Figure S1. Related to Figure 1. Hepatic vagotomy did not affect body mass (A), percent fat mass (B), or

- 4 percent lean mass (C) in adult male mice on a chow diet and after 9 weeks on a high fat diet. Number
- 5 below bar denotes n per group. All data are presented as mean \pm SEM.

6 7 Figure S2. Related to Figure 2. Immunohistochemical validation of liver specific viral induced PSEM89S 8 ligand gated depolarizing channel (A-B; 10X magnification). Skeletal muscle (Sk. Muscle), pancreas, and 9 adipose tissue from an albumin-cre expressing mouse tail-vein injected with an AAV8 encoding for the 10 PSEM89S ligand activated depolarizing channel and green fluorescent protein (GFP) whose expression is dependent on cre-recombinase (A). Skeletal muscle (Sk. Muscle), pancreas, and adipose from a wildtype 11 mouse tail-vein injected with an AAV8 encoding the PSEM89S ligand activated depolarizing channel and 12 13 GFP whose liver specific expression is driven by the thyroxine binding globulin (TBG) promoter (B). GFP 14 positive cells in the liver of a wildtype mouse tail-vein injected with the TBG virus co-stain with arginase-1 (C-E; 20X magnification). Staining for GFP (C), the hepatocyte specific marker arginase-1 (D), and 15 16 double labeling of GFP and arginase-1 (E; arrows indicate co-staining). No primary control imaged at the 17 same settings as panel E (F). Green = GFP, red = arginase-1, blue = DAPI (nucleus).

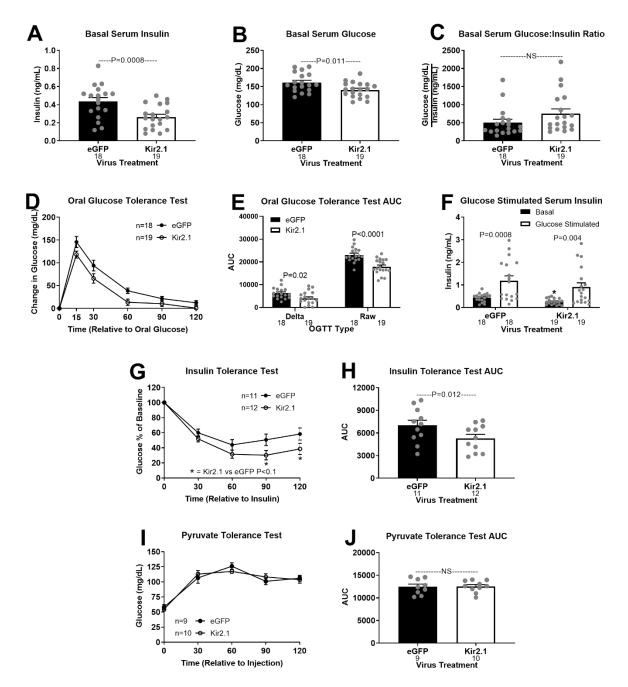


Figure S3. Related to Figure 3. Hepatic Kir2.1 expression alters glucose homeostasis in the lean mouse.
Hepatic Kir2.1 expression effects on serum insulin (A) glucose (B), glucose:insulin ratio (C), oral glucose
tolerance (OGTT; D), OGTT area under the curve (AUC; E), oral glucose stimulated serum insulin (F; *
denotes significance (P < 0.05) between bars of the same color), insulin tolerance (ITT; G) ITT AUC (H),
pyruvate tolerance (PTT; I), and PTT AUC (J). NS = non-significant. Number below bar denotes n per

24 group. All data are presented as mean \pm SEM.

25

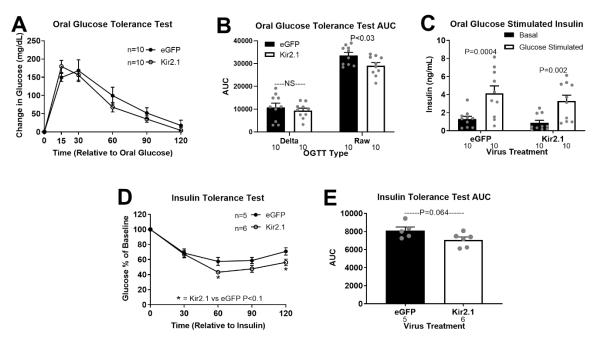
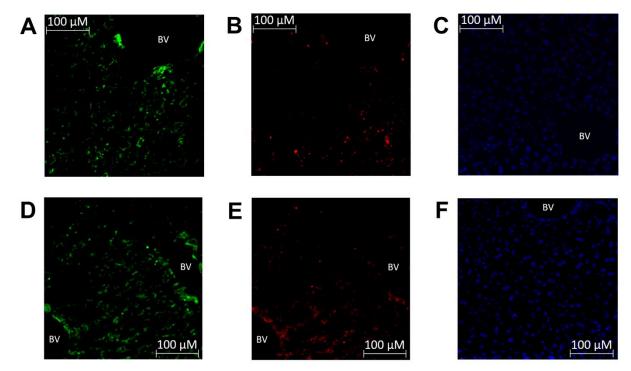
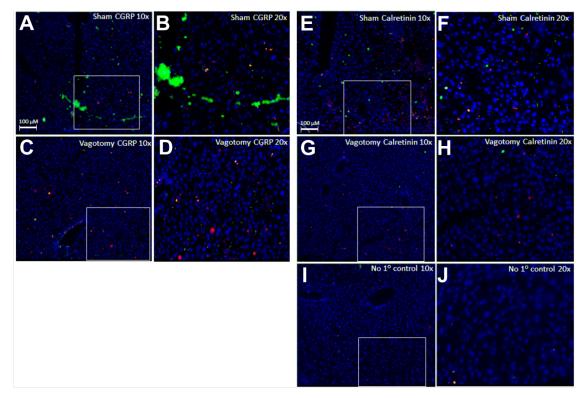
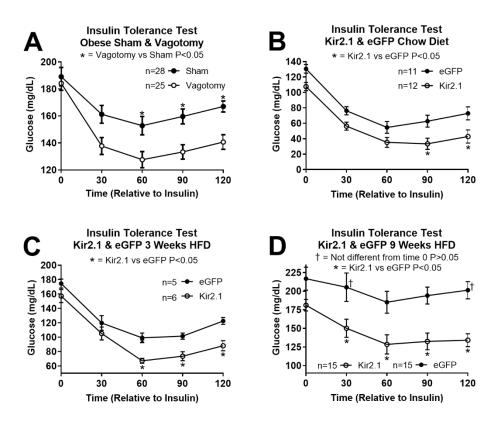


Figure S4. Related to Figure 3. Glucose homeostasis in Kir2.1 and eGFP control mice at 3 weeks of high fat diet feeding. Effect of hepatic Kir2.1 expression on oral glucose tolerance (OGTT; A), OGTT area under

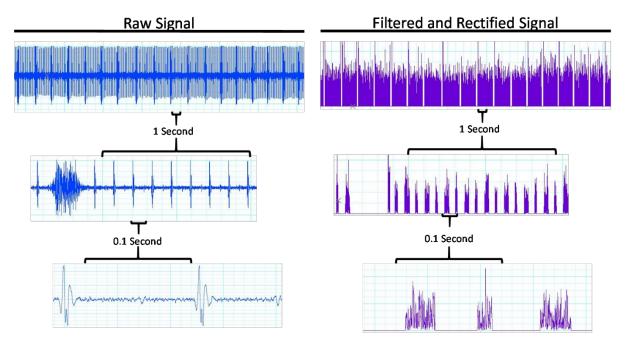
the curve (AUC; B), oral glucose stimulated serum insulin (C), insulin tolerance (ITT; D), and ITT AUC

31 (E). NS = non-significant. Number below bar denotes n per group. All data are presented as mean \pm SEM.


Figure S5. Related to Figure 6. Immunohistochemical evidence of GABA_A receptor expressing vagal afferent innervation in the liver. Staining for the vagal afferent marker calretinin (A) and GABA_A receptors
(B) which correspond with the co-labeled image in Fig. 6A. No primary control imaged at the same settings as Fig. 6A (C). Staining for the alternative vagal afferent marker calcitonin gene-related peptide (CGRP;
D) and GABA_A receptors (E) which correspond with the co-labeled image in Fig. 6C. No primary control imaged at the same settings as Fig. 6C (F). Blue = DAPI (nucleus). Images at 10X magnification. BV =

- 40 blood vessel
- 41



42 43 Figure S6. Related to Figure 6. Immunohistochemical evidence that hepatic vagotomy decreases 44 immunohistochemical staining for 2 vagal afferent markers (green), calcitonin gene related 45 peptide (CGRP; A-D) and calretinin (E-H). GABAA receptor is labeled in red. All images, 46 including no-primary controls (I and J) were collected with identical settings. Blue = DAPI (nucleus). Images at 10 and 20X magnification as labelled. 47

Figure S7. Related to Figures 1 and 3. Insulin tolerance tests (ITT) presented as raw glucose values. ITT in HFD fed sham and vagotomized mice (A). ITT in Kir2.1 and eGFP control mice on chow diet (B), and after 3 (C), and 9 weeks of HFD feeding (D). † Denotes the data point is not significantly different from time 0 for that group (P > 0.05). Unless indicated, all other timepoints are significantly different from time 0 within a group of mice. * Denotes significance between groups specified in the panel within a timepoint. All data are presented as mean \pm SEM.

58 59 Figure S8. Related to Figure 2. Raw signal generated from vagal nerve recordings including ECG signal and breathing artifacts. Data was filtered to remove these signals that are not specific to vagal nerve 60 activity and the signal rectified to allow for integration of total nerve bundle activity. Top to bottom 61 62 includes more zoomed in versions of the timeline to allow the reader to understand exactly what was

63 analyzed.

Neurotransmitter			% Change	
(µmol/µg DNA)	Lean (N = 5)	Obese $(N = 3)$	in Obesity	
Adenosine	0.22 ± 0.04	0.10 ± 0.01	-55%*	
Histidine	17.74 ± 0.92	12.90 ± 0.72	-27%*	
Serine	22.32 ± 3.33	13.02 ± 0.53	-42%	
Taurine	238.40 ± 18.41	305.18 ± 38.04	28%	
Glutamine	49.06 ± 5.19	40.39 ± 3.98	-17%	
Glycine	130.74 ± 5.16	81.31 ± 4.93	-37%*	
Aspartic Acid	6.92 ± 0.55	3.47 ± 0.32	-50%*	
Glutamic Acid	30.32 ± 2.12	28.74 ± 3.48	-5.2%	
GABA	5.43 ± 0.64	8.77 ± 0.53	61%*	

 Table S1. Liver slice neurotransmitter panel data. Related to Figure 4.
 64

Initial neuromodulators panel analysis on media collected form the liver 66

explant studies performed by the Mayo Clinic Metabolomics Regional 67 Core. *Indicates significant difference between obese and lean mice

68 (P<0.05). Data are presented as mean \pm SEM. 69

	Mean \pm SEM	Range
Body mass index (kg/m ²)	45.1 ± 1.3	35.9 - 55.6
Intrahepatic triglyceride content (%)	11.4 ± 1.9	2.7 - 28.0
Glucose (mg/dL)	97 ± 2	81 - 121
Insulin (µU/mL)	24.1 ± 1.7	13.1 - 46.5
Glucose infusion rate during insulin infusion (µmol/kg FFM/min)	36.0 ± 3.0	15.2 - 60.8
Glucose Rd during insulin infusion (% increase)	131 ± 19	30 - 355

Table S2. Metabolic characteristics of the study subjects (n=19). Related to Figure 7.

71 FFM, fat free mass; Glucose Rd, glucose disposal rate.

- 72 Table S3. Related to Figure 7. Regression coefficient estimates showing
- 73 the association between hepatic mRNA expression of genes involved in
- 74 GABA production (ABAT) and GABA transport (Slc6A6, A8, A12, and
- 75 A13) and glucose infusion rate (μ Mol/Kg Fat Free Mass/min) and
- 76 Glucose Rd (rate of disposal; % increase) during a hyperinsulinemic-
- 77 euglycemic clamp.

Glucose Infusion Rate (µMol/Kg Fat Free Mass/min)						
	Estimate	SEM	Lower CI	Upper Cl	P- Value	
Intercept	-36.41	53.75	-158.00	85.18	0.5152	
IHTG (%)	-0.50	0.19	-0.92	-0.08	0.0242	
SLC6A12	13.80	5.72	0.86	26.74	0.0391	
SLC6A13	10.74	4.18	1.28	20.20	0.0302	
SLC6A6	-15.63	3.20	-22.87	-8.38	0.0009	
SLC6A8	-5.65	1.95	-10.07	-1.23	0.0179	
ABAT	-3.26	7.04	-19.20	12.67	0.6545	
	Glucose Rd I	During Ins	ulin Infusion	(% Increase)		
	Estimate	SEM	Lower Cl	Upper Cl	P- Value	
Intercept	-3.91	4.24	-13.49	5.68	0.3805	
IHTG (%)	-0.03	0.01	-0.07	0.00	0.0427	
SLC6A12	1.02	0.45	0.00	2.04	0.0505	
SLC6A13	0.64	0.33	-0.10	1.39	0.0834	
SLC6A6	-0.71	0.25	-1.28	-0.14	0.0204	
SLC6A8	-0.45	0.15	-0.79	-0.10	0.0178	
ABAT	-0.24	0.56	-1.50	1.01	0.6712	

Table S4. Related to Figure 7. Single nucleotide polymorphisms (SNPs) that result in missense mutations in GABA transporters are associated with an increased incidence (OR; odds ratio) of type 2 diabetes (T2D; source: knowledge portal diabetes database). MAF – minor allele frequency.

	x · · ·	<i>SLC6A12</i> - T2D	Associated SNPs	2			
Variant ID	dbSNP ID	Predicted Impact	Study	P-value	Effect	OR	MAF
12 313839 G A	rs188610	Missense: synonymous variant	AMP T2D-GENES T2D exome sequence analysis	0.0238	↑	1.1	0.0386
12_313824_G_A	rs199521597	Missense: early stop codon	BioMe AMP T2D GWAS	0.0409	↑	15.8	0.000269
		SL ((112 - TAD					
Versent ID	JL CND ID		Associated SNPs	Devalues	Effort	OD	МАБ
Variant ID	dbSNP ID	Predicted Impact	Study	P-value	Effect	OR	MAF
12 330193 C T	rs61741313	Missense: Replaces Arganine with Glutamine	DIAMANTE (European) T2D GWAS	0.04	↑	1.04	0.01291- 0.0531
		<i>SLC6A6</i> -T2D	Associated SNPs				
Variant ID	dbSNP ID	Predicted Impact	Study	P-value	Effect	OR	MAF
3 14489107 G A	rs62233560	Missense: Replaces Valine with Isoleucine	AMP T2D-GENES T2D exome sequence analysis: Europeans	0.00143	1	1.4	0.005- 0.0165
		Missense: Replaces Valine with					0.0062-
3_14523296_G_A	rs41284017	Isoleucine	70KforT2D GWAS	0.00234	1	1.38	0.0165
		SLC6A12 - T2D Adjusted	for BMI Associated SNPs	-			
Variant ID	dbSNP ID	Predicted Impact	Study	P-value	Effect	OR	MAF
12 302492 C G	rs138178078	Missense: Replace Tryptophan with Serine	ExTexT2D exome chip analysis	0.000071	Ť	1.26	0.0052
12 319125 A G	rs557881	Missense: Replace Cysteine with Arginine	ExTexT2D exome chip analysis	0.0396	↑	1.01	0.48
		Missense: Replace Glutamate with	¥				
12_300248_C_G,T	rs147574089	Glutamine	CAMP GWAS	0.0397	T	6.09	0.0012
		<i>SLC6413</i> - T2D	Associated SNPs				
Variant ID	dbSNP ID	Predicted Impact	Study	P-value	Effect	OR	MAF
12 346454 C T	rs140951084	Missense in Splice Region: Replace Arginine with Glutamine	BioMe AMP T2D GWAS	0.0359	1	3.55	0.0019