727 research outputs found

    ESBL-producing Enterobacteriaceae in 24 neonatal units and associated networks in the south of England: no clustering of ESBL-producing Escherichia coli in units or networks.

    Get PDF
    OBJECTIVES: The objectives of this study were to characterize ESBL-producing Enterobacteriaceae present in 24 neonatal units (NNUs) in eight networks participating in a multicentre probiotic study and to test the hypothesis that specific strains would cluster within individual units and networks. METHODS: We performed analysis of stool samples for the presence of ESBL-producing Enterobacteriaceae at 2 weeks post-natal age and 36 weeks post-menstrual age. ESBL-producing Enterobacteriaceae were characterized and typed using molecular methods. RESULTS: ESBL-producing Enterobacteriaceae (n = 71) were isolated from 67/1229 (5.5%) infants from whom we received a sample at either sampling time or both sampling times, and from infants in 18 (75%) of the 24 recruiting NNUs. Thirty-three Escherichia coli, 23 Klebsiella spp. and 6 Enterobacter spp. strains were characterized. ESBL-producing E. coli were all distinguishable within individual NNUs by antibiotic resistance genotype, serogroup (O25b), phenotype, phylotype or ST. Ten of the 33 were ST131 and 9 of the 10 ST131 isolates were ciprofloxacin resistant. Seven of the 10 ST131 isolates carried genes encoding CTX-M group 1 enzymes. ST131 isolates were isolated from centres within five of the eight NNU networks. There were clusters of indistinguishable ESBL-producing Klebsiella and Enterobacter isolates associated with specific NNUs. CONCLUSIONS: Strains of E. coli ST131 were distributed across neonatal networks in the south of England. There was no evidence of clustering of clonally related ESBL-producing E. coli strains, by contrast with Klebsiella spp. and Enterobacter spp., which did cluster within units. The possibility that ESBL-producing E. coli strains are spread by vertical transmission requires further investigation

    Monopolin subunit Csm1 associates with MIND complex to establish monopolar attachment of sister kinetochores at meiosis I

    Get PDF
    Sexually reproducing organisms halve their cellular ploidy during gametogenesis by undergoing a specialized form of cell division known as meiosis. During meiosis, a single round of DNA replication is followed by two rounds of nuclear divisions (referred to as meiosis I and II). While sister kinetochores bind to microtubules emanating from opposite spindle poles during mitosis, they bind to microtubules originating from the same spindle pole during meiosis I. This phenomenon is referred to as mono-orientation and is essential for setting up the reductional mode of chromosome segregation during meiosis I. In budding yeast, mono-orientation depends on a four component protein complex referred to as monopolin which consists of two nucleolar proteins Csm1 and Lrs4, meiosis-specific protein Mam1 of unknown function and casein kinase Hrr25. Monopolin complex binds to kinetochores during meiosis I and prevents bipolar attachments. Although monopolin associates with kinetochores during meiosis I, its binding site(s) on the kinetochore is not known and its mechanism of action has not been established. By carrying out an imaging-based screen we have found that the MIND complex, a component of the central kinetochore, is required for monopolin association with kinetochores during meiosis. Furthermore, we demonstrate that interaction of monopolin subunit Csm1 with the N-terminal domain of MIND complex subunit Dsn1, is essential for both the association of monopolin with kinetochores and for monopolar attachment of sister kinetochores during meiosis I. As such this provides the first functional evidence for a monopolin-binding site at the kinetochore

    Disease progression in Plasmodium knowlesi malaria is linked to variation in invasion gene family members.

    Get PDF
    Emerging pathogens undermine initiatives to control the global health impact of infectious diseases. Zoonotic malaria is no exception. Plasmodium knowlesi, a malaria parasite of Southeast Asian macaques, has entered the human population. P. knowlesi, like Plasmodium falciparum, can reach high parasitaemia in human infections, and the World Health Organization guidelines for severe malaria list hyperparasitaemia among the measures of severe malaria in both infections. Not all patients with P. knowlesi infections develop hyperparasitaemia, and it is important to determine why. Between isolate variability in erythrocyte invasion, efficiency seems key. Here we investigate the idea that particular alleles of two P. knowlesi erythrocyte invasion genes, P. knowlesi normocyte binding protein Pknbpxa and Pknbpxb, influence parasitaemia and human disease progression. Pknbpxa and Pknbpxb reference DNA sequences were generated from five geographically and temporally distinct P. knowlesi patient isolates. Polymorphic regions of each gene (approximately 800 bp) were identified by haplotyping 147 patient isolates at each locus. Parasitaemia in the study cohort was associated with markers of disease severity including liver and renal dysfunction, haemoglobin, platelets and lactate, (r = ≥ 0.34, p =  <0.0001 for all). Seventy-five and 51 Pknbpxa and Pknbpxb haplotypes were resolved in 138 (94%) and 134 (92%) patient isolates respectively. The haplotypes formed twelve Pknbpxa and two Pknbpxb allelic groups. Patients infected with parasites with particular Pknbpxa and Pknbpxb alleles within the groups had significantly higher parasitaemia and other markers of disease severity. Our study strongly suggests that P. knowlesi invasion gene variants contribute to parasite virulence. We focused on two invasion genes, and we anticipate that additional virulent loci will be identified in pathogen genome-wide studies. The multiple sustained entries of this diverse pathogen into the human population must give cause for concern to malaria elimination strategists in the Southeast Asian region

    Quantitative Analysis of BTF3, HINT1, NDRG1 and ODC1 Protein Over-Expression in Human Prostate Cancer Tissue.

    Get PDF
    Prostate carcinoma is the most common cancer in men with few, quantifiable, biomarkers. Prostate cancer biomarker discovery has been hampered due to subjective analysis of protein expression in tissue sections. An unbiased, quantitative immunohistochemical approach provided here, for the diagnosis and stratification of prostate cancer could overcome this problem. Antibodies against four proteins BTF3, HINT1, NDRG1 and ODC1 were used in a prostate tissue array (> 500 individual tissue cores from 82 patients, 41 case pairs matched with one patient in each pair had biochemical recurrence). Protein expression, quantified in an unbiased manner using an automated analysis protocol in ImageJ software, was increased in malignant vs non-malignant prostate (by 2-2.5 fold, p<0.0001). Operating characteristics indicate sensitivity in the range of 0.68 to 0.74; combination of markers in a logistic regression model demonstrates further improvement in diagnostic power. Triple-labeled immunofluorescence (BTF3, HINT1 and NDRG1) in tissue array showed a significant (p<0.02) change in co-localization coefficients for BTF3 and NDRG1 co-expression in biochemical relapse vs non-relapse cancer epithelium. BTF3, HINT1, NDRG1 and ODC1 could be developed as epithelial specific biomarkers for tissue based diagnosis and stratification of prostate cancer

    Pneumococcal carriage in sub-Saharan Africa--a systematic review.

    Get PDF
    BACKGROUND: Pneumococcal epidemiology varies geographically and few data are available from the African continent. We assess pneumococcal carriage from studies conducted in sub-Saharan Africa (sSA) before and after the pneumococcal conjugate vaccine (PCV) era. METHODS: A search for pneumococcal carriage studies published before 2012 was conducted to describe carriage in sSA. The review also describes pneumococcal serotypes and assesses the impact of vaccination on carriage in this region. RESULTS: Fifty-seven studies were included in this review with the majority (40.3%) from South Africa. There was considerable variability in the prevalence of carriage between studies (I-squared statistic = 99%). Carriage was higher in children and decreased with increasing age, 63.2% (95% CI: 55.6-70.8) in children less than 5 years, 42.6% (95% CI: 29.9-55.4) in children 5-15 years and 28.0% (95% CI: 19.0-37.0) in adults older than 15 years. There was no difference in the prevalence of carriage between males and females in 9/11 studies. Serotypes 19F, 6B, 6A, 14 and 23F were the five most common isolates. A meta-analysis of four randomized trials of PCV vaccination in children aged 9-24 months showed that carriage of vaccine type (VT) serotypes decreased with PCV vaccination; however, overall carriage remained the same because of a concomitant increase in non-vaccine type (NVT) serotypes. CONCLUSION: Pneumococcal carriage is generally high in the African continent, particularly in young children. The five most common serotypes in sSA are among the top seven serotypes that cause invasive pneumococcal disease in children globally. These serotypes are covered by the two PCVs recommended for routine childhood immunization by the WHO. The distribution of serotypes found in the nasopharynx is altered by PCV vaccination

    Tobacco smoking and somatic mutations in human bronchial epithelium

    Get PDF
    Tobacco smoking causes lung cancer, a process that is driven by more than 60 carcinogens in cigarette smoke that directly damage and mutate DNA. The profound effects of tobacco on the genome of lung cancer cells are well-documented, but equivalent data for normal bronchial cells are lacking. Here we sequenced whole genomes of 632 colonies derived from single bronchial epithelial cells across 16 subjects. Tobacco smoking was the major influence on mutational burden, typically adding from 1,000 to 10,000 mutations per cell; massively increasing the variance both within and between subjects; and generating several distinct mutational signatures of substitutions and of insertions and deletions. A population of cells in individuals with a history of smoking had mutational burdens that were equivalent to those expected for people who had never smoked: these cells had less damage from tobacco-specific mutational processes, were fourfold more frequent in ex-smokers than current smokers and had considerably longer telomeres than their more-mutated counterparts. Driver mutations increased in frequency with age, affecting 4–14% of cells in middle-aged subjects who had never smoked. In current smokers, at least 25% of cells carried driver mutations and 0–6% of cells had two or even three drivers. Thus, tobacco smoking increases mutational burden, cell-to-cell heterogeneity and driver mutations, but quitting promotes replenishment of the bronchial epithelium from mitotically quiescent cells that have avoided tobacco mutagenesis

    Pilot evaluation of the psychometric properties of a self-medication Risk Assessment Tool among elderly patients in a community setting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although community pharmacists in the United Kingdom are expected to assess elderly patients' needs for additional support in managing their medicines, there is limited data on potentially useful assessment tools. We sought to evaluate a 13-item assessment instrument among community dwelling elderly patients, 65 years and above. The instrument is composed of a cognitive risk sub-scale of 6 items and a physical risk sub-scale of 7 items.</p> <p>Findings</p> <p>The instrument was administered to elderly patients in a survey performed in a community to the west of Glasgow, Scotland. The survey recruited 37 participants, 31 from 4 community pharmacies and 6 patients whose medication management tasks were managed by the West Glasgow Community Health and Care Partnership (managed patients). Community pharmacists independently rated 29 of the 37 participants' comprehension of, and dexterity in handling their medicines. We assessed scale reliability, convergent validity and criterion validity. In sub-analyses, we assessed differences in scores between the managed patients and those recruited from the community pharmacies, and between multi-compartment compliance aid users and non-users. The instrument showed satisfactory internal consistency (Cronbach's alpha of 0.792 for 13-item scale). There was significant strong negative correlation between the cognitive risk sub-scores and community pharmacists' assessment of comprehension (ρ = -0.546, p = 0.0038); and physical risk sub-scores and community pharmacists' assessment of dexterity (ρ = -0.491, p = 0.0093). The Area Under the Receiver Operator Characteristic Curve (AUC ± SE; 95%CI) showed that the instrument had good discriminatory capacity (0.86 ± 0.07; 0.68, 0.96). The best cut-off (sensitivity, specificity) was ≥4 (65%, 100%). In the sub-analyses, managed patients had significantly higher cognitive risk sub-scores (6.5 versus 4.0, p = 0.0461) compared to non-managed patients. There was a significant difference in total risk score (4 versus 2, p = 0.0135) and cognitive risk sub-score (4 versus 1.5, p = 0.0029) between users and non-users of multi-compartment compliance aids.</p> <p>Conclusions</p> <p>This instrument shows potential for use in identifying elderly patients who may have problems managing their own medicines in the community setting. However, more robust validity and reliability assessments are needed prior to introduction of the tool into routine practice.</p

    Healthy Living after Cancer: A dissemination and implementation study evaluating a telephone-delivered healthy lifestyle program for cancer survivors

    Get PDF
    © 2015 Eakin et al. Background: Given evidence shows physical activity, a healthful diet and weight management can improve cancer outcomes and reduce chronic disease risk, the major cancer organisations and health authorities have endorsed related guidelines for cancer survivors. Despite these, and a growing evidence base on effective lifestyle interventions, there is limited uptake into survivorship care. Methods/Design: Healthy Living after Cancer (HLaC) is a national dissemination and implementation study that will evaluate the integration of an evidence-based lifestyle intervention for cancer survivors into an existing telephone cancer information and support service delivered by Australian state-based Cancer Councils. Eligible participants (adults having completed cancer treatment with curative intent) will receive 12 health coaching calls over 6 months from Cancer Council nurses/allied health professionals targeting national guidelines for physical activity, healthy eating and weight control. Using the RE-AIM evaluation framework, primary outcomes are service-level indicators of program reach, adoption, implementation/costs and maintenance, with secondary (effectiveness) outcomes of patient-reported anthropometric, behavioural and psychosocial variables collected at pre- and post-program completion. The total participant accrual target across four participating Cancer Councils is 900 over 3 years. Discussion: The national scope of the project and broad inclusion of cancer survivors, alongside evaluation of service-level indicators, associated costs and patient-reported outcomes, will provide the necessary practice-based evidence needed to inform future allocation of resources to support healthy living among cancer survivors. Trial registration: Australian and New Zealand Clinical Trials Registry (ANZCTR) - ACTRN12615000882527(registered on 24/08/2015
    corecore