
Tobacco exposure and somatic mutations in normal human bronchial 
epithelium 

 
Authors: Kenichi Yoshida (1) *; Kate HC Gowers (2) *; Henry Lee-Six (1); Deepak 

P Chandrasekharan (2); Tim Coorens (1); Elizabeth F Maughan (2); Kathryn Beal 

(1); Andrew Menzies (1); Fraser R Millar (2); Elizabeth Anderson (1); Sarah E 

Clarke (2); Adam Pennycuick (2); Ricky M Thakrar (2,3); Colin R Butler (2,3); 

Nobuyuki Kakiuchi (4); Tomonori Hirano (4); Robert E Hynds (2,5); Michael R 

Stratton (1); Inigo Martincorena (1); Sam M Janes (2,3) §; Peter J Campbell (1,6) §.  

 

* These authors contributed equally to the manuscript: Kenichi Yoshida and Kate 

HC Gowers 

§ These authors jointly supervised this work: Sam M Janes and Peter J Campbell 

 

Institutes: 

(1) Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, CB10 

1SA, UK 

(2) Lungs For Living Research Centre, UCL Respiratory, University College 

London, London, WC1E 6JF, UK 

(3) Department of Thoracic Medicine, University College London Hospital, 

London, UK 

(4) Department of Pathology and Tumor Biology, Kyoto University, Kyoto, 

Japan 

(5) CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University 

College London, London, UK 

(6) Stem Cell Institute, University of Cambridge, Hills Rd, Cambridge, UK 

 

 

Address for correspondence: 

Dr Peter J. Campbell, Cancer Genome Project, Wellcome Trust Sanger Institute, 

Hinxton CB10 1SA, United Kingdom.  

Telephone: +44 (0) 1223 834244.  

e-mail: pc8@sanger.ac.uk 

 

Professor Sam Janes, Lungs for Living Research Centre, UCL Respiratory, 5 

University Street, London, WC1E 6JF, U.K.  

Telephone: +44 (0) 203 549 5979  

E-mail: s.janes@ucl.ac.uk 

 

  

mailto:pc8@sanger.ac.uk


Summary paragraph 

Tobacco smoking causes lung cancer1–3, driven by the 60+ carcinogens in cigarette 

smoke that directly damage and mutate DNA4,5. The profound effects of tobacco 

on the lung cancer genome have been well documented6–10, but we lack equivalent 

data for normal bronchial cells. We sequenced whole genomes of 632 colonies 

derived from single bronchial epithelial cells across 16 subjects. Tobacco smoking 

was the major influence on mutation burden, adding 1000-10,000+ 

mutations/cell, massively increasing both between-subject and within-subject 

variance, and generating several distinct signatures of substitutions and indels. A 

population of cells in subjects with smoking history had mutation burdens 

equivalent to that expected for never-smokers: these cells had less damage from 

tobacco-specific mutational processes, were four-fold more frequent in ex-

smokers than current smokers, and had significantly longer telomeres than their 

more mutated counterparts. Driver mutations increased in frequency with age, 

affecting 4-14% of cells in middle-aged never-smokers. In current smokers, ≥25% 

of cells carried driver mutations and 0-6% cells had 2 or even 3 drivers. Thus, 

tobacco smoking increases mutation burden, cell-to-cell heterogeneity and driver 

mutations, but quitting promotes replenishment of bronchial epithelium from 

mitotically quiescent cells that have avoided tobacco mutagenesis. 

    



Introduction 

Lung cancer kills more people globally than any other cancer, with 80-90% of 

those deaths attributable to tobacco exposure1,2. Our model for how tobacco 

causes lung cancer emphasises direct mutagenesis from the 60+ carcinogens in 

cigarette smoke4,5, combined with indirect effects such as inflammation, immune 

suppression and infection. Recognised first in TP53 sequencing5 and more 

recently in genome-wide sequencing of lung cancers6–10, tobacco exposure leads 

to both an increase in somatic mutation burden and an altered spectrum of 

mutations. A lung cancer genome from a smoker typically has tens of thousands 

of somatic mutations6,7,9 – of these, a small handful, probably <20, drive the 

biology of the tumour11–13.  

 

Epidemiological studies have quantified the relationships between lung cancer 

and duration of smoking, intensity of smoking, type of smoking and timing of 

smoking cessation1–3,14. Interpreting these observations from population cohorts 

in terms of the molecular basis for tobacco carcinogenesis is challenging. Under a 

model in which lung cancer requires 𝑛 driver mutations, an exposure that, say, 

increases mutation rates k-fold should increase incidence by ~kn, across a range 

of growth patterns11. However, in a paradox first noted by Armitage in 197115, the 

dose-response relationship between number of cigarettes smoked per day and 

lung cancer risk is linear3,14, 𝑘1, or at most weakly quadratic16. The benefits from 

smoking cessation likewise do not fit straightforwardly into multistage models of 

cancer15. By stopping in middle age or earlier, smokers avoid most of the risk of 

tobacco-associated lung cancer, a benefit that begins to emerge almost 

immediately and accrues steadily with time2. Of two people who smoked the same 

lifetime number of cigarettes, why the one with longer duration of cessation 

should have lower risk of lung cancer is difficult to explain if tobacco induces 

carcinogenesis exclusively via increased mutation burden.  

 

Sequencing single-cell–derived colonies 

We recruited 16 patients to assess the landscape of somatic mutations in normal 

bronchial epithelium: 3 children, 4 never-smokers, 6 ex-smokers and 3 current 

smokers (Supplementary Table 1). For ethical reasons, samples could only be 



obtained from subjects undergoing a bronchoscopy for clinical indications. The 

never-smokers and current smokers had bronchoscopy to investigate changes 

eventually diagnosed as benign. Of the ex-smokers, 2 had had a previous cancer 

treated with curative intent, and 5 had a carcinoma in situ or invasive squamous 

cell carcinoma that was the indication for bronchoscopy. The children in the 

cohort had bronchoscopy for investigation or follow-up of congenital anomalies: 

all had normal bronchial epithelium.  

 

Samples of airway epithelium were obtained from biopsies or brushings of main 

or secondary bronchi. These were dissociated into single cells and EPCAM-

positive epithelial cells flow-sorted, one to a well, onto mouse feeder cells allowing 

basal cell attachment and growth (Extended Figure 1A). Each cell was 

independently cultured to obtain single-cell–derived colonies that expressed the 

transcripts expected for basal cells of pseudostratified bronchial epithelium 

(Extended Figure 1B). Typically 15-40% of flow-sorted cells produced colonies 

(Extended Figure 1C), confirming that cells sequenced were drawn from a 

prevalent and representative population of epithelial cells. Colonies underwent 

whole genome sequencing to average coverage 16x (Supplementary Table 2), 

analysed using a xenograft pipeline to flag non-human sequencing reads 

(Extended Figure 2A-B). Somatically acquired mutations were identified from 

reads specific to the human genome. In nearly all colonies, the variant allele 

fraction of mutations averaged ~50%, consistent with contamination-free 

colonies derived from a single bronchial cell (Extended Figure 2C). To remove 

variants possibly acquired in vitro, we excluded mutations with variant allele 

fraction <30% that were present in only a single colony (Extended Figure 2C). 

Occasional colonies had a low mean variant allele fraction (Extended Figure 2D), 

consistent with seeding by two bronchial cells – these colonies were excluded 

from downstream analyses. We estimate that sequencing depth of 8x gave 

sensitivity for variants of 70-75%, rising to >95% at 15x (Extended Figure 2E). 

The majority of colonies had depth >15x, and we set a minimum cut-off of 8x for 

inclusion. 

  



The final dataset comprises somatic mutation catalogues from whole genomes of 

632 single bronchial cells. Five patients had squamous cell carcinomas or 

carcinoma in situ, three of which we also sequenced. Normal basal cells from these 

patients shared no clonal relationships with the carcinomas, and we found no 

systematic differences in mutation burden between normal cells in the vicinity of 

carcinoma in situ lesions and histologically normal regions (Extended Figure 2F).  

 

Mutation burden 

The burden of somatic substitutions per cell showed considerable heterogeneity 

both across the cohort and even within individual patients (Figure 1A). Using 

linear mixed effects (LME) models, we assessed factors influencing mutation 

burden (Supplementary Code). Single base substitutions increased significantly 

with age, at an estimated rate of 22/cell/year (CI95%=20-25; p=10-8; Figure 1B). 

Previous or current smoking significantly increased mean burden of substitutions 

(p=0.0002) by an estimated 2330/cell (CI95%=1180-3480) in ex-smokers and 

5300/cell (CI95%=3660-6930) in current smokers.  

 

While the effects of age and smoking are expected, what was more surprising was 

that smoking massively increased the variability in mutation burden from cell to 

cell, even within the same individual. Among closely collocated cells from a given 

subject’s tiny biopsy of normal airway, the estimated standard deviation was 

2350/cell in ex-smokers and 2100/cell for current smokers compared with 

140/cell for children and 290/cell for adult never-smokers (p<10-16 for within-

subject heterogeneity in variance across smoking categories; LME). There was 

also heterogeneity across individuals, with standard deviation in mean 

substitution burden estimated at 1200/cell for ex-smokers and 1260/cell for 

current smokers, compared to 90/cell for non-smokers (p=10-8 for between-

subject heterogeneity of variance; LME).  

 

While most of the cells in ex- or current smokers had considerably elevated 

substitution burden, a fraction of cells in these patients had burdens within the 

range expected for never-smokers of an equivalent age (Figure 1C). For many of 

these patients, the distribution of mutation burden was distinctly bimodal, with 



one mode in the near-normal range and the other mode having substantially 

elevated mutation burden (Extended Figure 3A). Strikingly, although cells with 

near-normal mutation burden were rarely present in current smokers, their 

relative frequency was on average four-fold higher in ex-smokers (CI95%=2.0-7.9x; 

p=3x10-6; log-linear model), typically accounting for 20-40% of all cells studied. 

Colonies with near-normal mutation burden expressed the same set of airway 

basal cell genes as colonies with elevated mutation burden, and had the same 

tightly associated, cobbled architecture in culture (Extended Figure 3B-C), 

confirming they did indeed derive from bronchial epithelial cells.  

 

Among current and ex-smokers, we found no significant correlation of mutation 

burden with duration of cigarette smoking or the number of cigarettes smoked 

per day, even if near-normal cells are excluded. However, the small numbers of 

subjects and large within-subject heterogeneity limits our statistical power for 

this analysis, and definitive analysis will require much larger sample size. 

 

Indels showed similar associations as substitutions, increasing steadily with age 

(0.7 indels/cell/year; CI95%=0.6-0.8; p=10-6) and tobacco smoking (101 extra 

indels/cell in smokers; 51 in ex-smokers;  p=0.001; Extended Figure 4A). 

Generally, the normal bronchial epithelial cells had few copy number changes or 

structural variants (Extended Figure 4B) – this represents a qualitative 

difference from lung cancers, which tend to have large numbers of structural 

abnormalities6,7,9,17. Interestingly, there were occasional examples of more 

complex structural events in the bronchial epithelial cells, including chromoplexy 

(Extended Figure 4C) and even chromothripsis in a cell from a child (Extended 

Figure 4D). The latter is particularly interesting, given recent data suggesting 

driver gene fusions in lung adenocarcinoma can arise through complex structural 

events early in life17. 

 

Mutational signatures 

A range of mutational processes operate in lung cancers, driven by both the 

exogenous carcinogens present in tobacco smoke and endogenous DNA damage – 

these processes leave characteristic signatures in the genome8. We built 



phylogenetic trees for each patient, and applied a Bayesian de novo mutational 

signature discovery algorithm to mutations assigned to each branch, together 

with samples from squamous cell lung cancers18 and in vitro cell culture controls19 

to maintain comparability with previous analyses8 (Figure 2). Reassuringly, few 

mutations in our samples, typically <10-30/cell, were attributed to SBS-18, the 

signature that accounted for all variants in the cell culture controls19, confirming 

that mutations acquired in vitro are minimal in our dataset. Similar results 

emerged using a different mutational signature algorithm20 (Extended Figure 

5A-C). 

 

The endogenous mutational signature SBS-5 contributed a large proportion of 

mutations in all subjects, accumulating linearly with age (Figure 2C-D). As 

previously reported7,8, the absolute number of mutations attributed to this 

signature is higher in those with a smoking history (ex-smokers 1140/cell, 

CI95%=590-1700; current smokers 2200/cell, CI95%=1590-2810; p<10-16). 

Signature SBS-1, comprising C>T mutations at CpG dinucleotides, contributed 

larger proportions of mutations in the young children than the adults, but absolute 

numbers continued to increase linearly with age through adulthood (Figure 2C-

D). Presumably, then, SBS-1 is enriched during early lung development and 

continues steadily throughout life, but other signatures become proportionally 

more active in adulthood. A novel signature (Sig-A; Figure 2B) was universally 

present across samples. It has some resemblance to SBS-5, and likewise increased 

linearly with age. 

 

Signatures SBS-2 and SBS-13, caused by APOBEC3A/B mutagenesis, showed 

striking heterogeneity – mostly absent from bronchial cells, but occasionally 

contributing hundreds of mutations in an individual cell, even in children. This 

activity appears temporally restricted: individual branches of a phylogenetic tree 

had high proportions of SBS-2/13 despite their absence from antecedent and 

descendent branches (Figure 3A; Extended Figure 6). This implies that the 

episodic activity of APOBEC mutagenesis observed in cell lines21 extends to 

somatic cells in vivo – the proportion of mutations attributed to APOBECs on a 



given branch of the phylogenetic tree does not predict past or future mutagenesis 

rates in that lineage.  

 

Three substitution signatures were largely restricted to current or ex-smokers. 

Signature SBS-4 was expected since it is the predominant signature in lung 

cancers from smokers7,8 and is recapitulated by in vitro exposure to polycyclic 

aromatic hydrocarbons19. Second, SBS-16 comprised 5-15% mutations in several 

current or ex-smokers, but was absent from never-smokers. This signature, with 

its distinctive pattern of transcription-coupled damage and repair22 (Extended 

Figure 5D), correlates with alcohol and tobacco exposure in hepatocellular 

carcinomas8,23, but has not been linked with tobacco exposure in lung cancers 

previously.  

 

A new mutational signature was extracted, comprising predominantly T>A and 

T>C mutations (Sig-B; Figure 2B), that was evident only in patients with a 

smoking history. The signature was mostly present at low rates, but in one ex-

smoker it contributed up to 15% of mutations per cell. We find a strong 

transcriptional strand bias, with the transcribed strand showing decreased rates 

of mutation at the adenine in the T:A pairing. This is consistent with in vitro data 

that purines are more reactive with mutagens in tobacco smoke than 

pyrimidines5.  

 

As described above, an unexpectedly high fraction of cells in ex-smokers had near-

normal mutation burden. These cells had considerably lower proportions of SBS-

4 mutations than cells in the same patients with elevated mutation burden. 

Instead, the distribution of signatures in these near-normal cells resembled that 

seen in never-smokers, with prominent endogenous signatures such as SBS-5, 

SBS-1 and Sig-A. Phylogenetically, cells with near-normal mutation burden 

showed polyclonal origins (Figure 3A), suggesting they do not arise from 

expansion of a single ancestral cell. 

 

Signatures of indels and double-base substitutions observed in normal bronchial 

epithelium matched those extracted from lung cancers24 and generated in vitro by 



exposure of cells to polycyclic aromatic hydrocarbons19 (Extended Figures 7-8). 

A history of tobacco smoking was particularly associated with a signature of 

double-base substitutions at CpC/GpG dinucleotides – this accords with the high 

rates of C>A/G>T single-base substitutions in SBS-4. Likewise, tobacco exposure 

was associated with an indel signature of single-base deletions of 

cytosines/guanines in our dataset. Taken together, these data suggest that the 

predilection of polycyclic aromatic hydrocarbons in tobacco smoke to bind 

guanine nucleotides can result in a range of mutation types, even in normal 

bronchial epithelial cells, including single base substitutions, dinucleotide 

substitutions and small indels.  

 

Driver mutations 

To assess whether any mutations are under positive selection in normal bronchial 

epithelium, we applied an algorithm, dNdScv, that identifies and quantifies excess 

non-synonymous mutations compared with that expected from synonymous 

(neutral) variants, correcting for local variation in mutation rates12. With 

hypothesis testing across all coding genes, three were significant: NOTCH1 (20 

unique non-synonymous variants; q=1x10-5); TP53 (7; q=2x10-4); and ARID2 (7; 

q=4x10-4; Figure 3B). With hypothesis-testing restricted to genes mutated in lung 

cancers12,13,18,25,26 and normal squamous tissues27–29, FAT1, PTEN, CHEK2 and 

ARID1A were also significant, showing the expected patterns of protein-truncating 

mutations (Supplementary Tables 3-5; Extended Figure 9A). This closely 

resembles genes under positive selection in squamous cell lung cancers13,18 and 

other normal squamous tissues27–30.  

 

Driver mutations were more frequent in patients with a tobacco-smoking history 

(Figure 3C, Extended Figure 9B). No candidate driver mutations were identified 

in cells from children, 4-14% cells in adult never-smokers had drivers, whereas in 

current smokers, ≥25% of cells carried at least one driver. Furthermore, a small 

fraction of cells in smokers had 2 or even 3 coding driver point mutations (Figure 

3D), as many as seen in some lung cancers12. We used generalised linear mixed 

effects models to quantify these effects (Supplementary Code). Driver mutations 

were significantly more frequent in those with a smoking history, increased 2.1-



fold in current smokers compared to never-smokers (CI95%=1.0-4.4; p=0.04). The 

number of driver mutations also independently increased with age, with every 

decade of life increasing the number of drivers per cell 1.5-fold (CI95%=1.2-2.1; 

p=0.004), reminiscent of the increasing number of driver mutations with age in 

oesophagus28,29. Finally, the number of driver mutations doubled on average for 

every 5,000 extra somatic mutations per cell, independent of the other variables 

(CI95%=1.4-2.7; p=0.0003). 

 

Layering driver mutations onto phylogenetic trees revealed that driver mutations 

occurred throughout molecular time (Figure 3A; Extended Figure 6). TP53 

mutations were much more likely to be shared by 2 or more cells sequenced 

(Figure 3E), though, suggesting that they either occur earlier in molecular time or 

drive larger clonal expansions.  

 

Telomere lengths 

To assess historic mitotic activity, we estimated telomere lengths from the 

sequencing data (Figure 4). Bronchial cells from children had longer telomeres 

than those in adults (Extended Figure 10), as expected, and telomere lengths 

showed no correlation with mutation burden in children. Among never-smokers, 

there was also minimal correlation between mutation burden and telomere 

length. In current smokers, and especially in ex-smokers, however, there was a 

strong inverse relationship between telomere length and mutation burden, 

independent of the number of driver mutations (p=0.0009 for interaction 

between smoking status and telomere length; LME models; Supplementary 

Code). In particular, the cells with near-normal mutation burden in ex-smokers 

had considerably longer telomeres than their more mutated counterparts, 

suggesting they have historically undergone fewer cell divisions. 

  

DISCUSSION 

The simplicity of the notion that cigarette smoking causes lung cancer through its 

mutagenic effects belies the underlying complexity of how tobacco fashions clonal 

dynamics, mutation acquisition and the selective environment in the bronchus. 

Yes, exposure to tobacco smoke increases the number of somatic mutations, by an 



average of a few thousand mutations per normal bronchial cell, with the excess 

mutations attributable to signatures of carcinogens in cigarette smoke. Yes, this 

increased mutation burden generates more driver mutations. What is unexpected, 

though, is the massive within-patient variation in mutation burden among 

smokers – cells from the same tiny biopsy of bronchial epithelium can vary 10-

fold in mutation burden, from 1,000/cell to over 10,000/cell.  

 

Our cohort does potentially suffer from recruitment bias, since samples could only 

ethically be obtained from individuals undergoing a clinically indicated 

bronchoscopy. Nonetheless, such a recruitment bias could not explain the 

considerable within-patient variance in mutation burden, and we believe this 

finding will therefore apply to smokers more generally. Understanding how 

heterogeneity in mutation burden among competing cells contributes to clonal 

evolution will be important for refining our models of lung cancer development, 

which usually assume homogeneous effects of carcinogens across a population of 

cells. We recently described similar heterogeneity in tobacco mutagenesis among 

neighbouring clones within non-malignant liver, suggesting that this phenomenon 

is not restricted to bronchial epithelium31.  

 

We find a qualitatively distinct population of bronchial epithelial cells with near-

normal mutation burden in subjects with a smoking history. These cells have the 

same mutation burden as age-matched never-smokers; low proportions of 

signatures from tobacco carcinogens; longer telomeres than more mutated cells; 

and fourfold higher frequency in ex-smokers compared with current smokers. 

These cells are clearly cancer-protective – lung cancers that emerge in ex-smokers 

do not have near-normal mutation burden, typically showing high mutation 

burden associated with active tobacco signatures. 

 

Two puzzles emerge – how have these cells avoided the mutational ravages 

suffered by their neighbours, and why do they expand after smoking cessation? 

Their longer telomeres imply that cells with near-normal burden have undergone 

fewer cell divisions, potentially representing recent descendants of quiescent 

stem cells. Although they remain elusive in human lung32, quiescent stem cells 



have been identified through lineage tracing in mouse models, and have been 

shown to occupy a protected niche in submucosal glands and expand after lung 

injury33–35. A physically protected niche could explain how such stem cells would 

avoid exposure to tobacco carcinogens, but so too could mitotic quiescence itself, 

since replication is required to convert adducted DNA bases to mutations.  

 

It may be tempting to assume the expansion of cells with near-normal burden 

after smoking cessation arises through better fitness in the altered selection 

landscape – perhaps because they have longer telomeres, or fewer mutations, or 

aberrant NOTCH/TP53 signalling confers less advantage in the absence of tobacco 

smoke. These explanations notwithstanding, the near-normal cells’ apparent 

expansion could represent the expected physiology of a two-compartment model 

in which relatively short-lived proliferative progenitors are slowly replenished 

from a quiescent stem cell pool, but the progenitors are more exposed to tobacco 

carcinogens. Only in ex-smokers would the difference in mutagenic environment 

be sufficient to distinguish newly produced progenitors from long-term occupants 

of the bronchial coalface.  

 

Epidemiological studies show the health benefits of stopping smoking begin 

immediately, accrue with time since cessation and are evident even after quitting 

late in life2. That these benefits could be facilitated by replenishment of bronchial 

epithelium with cells essentially impervious to decades of sustained cigarette 

smoking attests to the lung’s remarkable resilience and regenerative capacity. The 

public health message has an appealing quality of absolution – stopping smoking, 

at any age, does not just slow the accumulation of further damage, but can 

reawaken cells unscathed by past lifestyle choices. 
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FIGURE LEGENDS 

 

Figure 1. Mutation burden in normal bronchial epithelium. 

(A) Burden of single base substitutions (SBS), small insertion-deletions (indels) 

and double base substitutions (DBS) across patients in the cohort. Box-and-

whisker plots show each subject, with the boxes indicating median and 

interquartile range, and the whiskers denoting the range. The overlaid points are 

the observed mutation burden of individual colonies. 

(B) Relationship of burden of substitutions per cell with age, with points 

representing individual colonies (n = 632) , coloured by smoking status. The black 

line represents the fitted effect of age on substitution burden, estimated from 

linear mixed effects models after correction for smoking status and within-patient 

correlation structure. The blue shaded area represents the 95% confidence 

interval for the fitted line. 

(C) Fraction of cells with near-normal mutation burden in current and ex-

smokers.  

 

Figure 2. Mutation signatures in normal bronchial epithelium. 

(A) Stacked bar-plot showing the proportional contribution of mutational 

signatures to single base substitutions across the 632 normal bronchial cells, 

extracted using a hierarchical Dirichlet process. Within each patient, colonies are 

sorted from left to right by increasing mutation burden (bar chart in dark grey 

above coloured signature attribution stacks). Dashed black vertical lines in 

current and ex-smokers denote the cut-off between cells with near-normal and 

elevated mutation burden.  

(B) Trinucleotide context spectrum on transcribed and untranscribed strands of 

two new single base substitution (SBS) signatures. The six substitution types are 

shown in the panel across the top. Within each panel, the trinucleotide context is 

shown as four sets of eight bars, grouped by whether an A, C, G or T respectively 

is 5’ to the mutated base, and within each group of eight by whether A, C, G or T is 

3’ to the mutated base. Activity of the mutational signature on the untranscribed 

strand is shown in pale colour; on the transcribed strand in darker colour. 



(C) Numbers of base substitutions attributed to the 3 endogenous signatures (y 

axis) across the cohort (n = 632)  shown according to age of subject (x axis). Black 

line represents the fitted effect of age, estimated from linear mixed effects models 

after correction for smoking status and within-patient correlation structure. The 

blue shaded area represents the 95% confidence interval for the fitted line. The 

quoted p values for the fixed effects of age and smoking derive from the full linear 

mixed effects models. 

(D) Estimated effect size of age, smoking status, between-patient and within-

patient standard deviation of 7 signatures (points) with 95% confidence intervals 

(horizontal lines). Estimates are derived from linear mixed effects models (n = 

632). 

 

Figure 3. Driver mutations in normal bronchial epithelial cells.  

(A) Phylogenetic trees showing clonal relationships among normal bronchial cells 

in 6 representative subjects. Branch lengths are proportional to the number of 

mutations (x axis) specific to that clone/subclone. Each branch is coloured by the 

proportion of mutations on that branch attributed to the various single base 

substitution signatures. Driver mutations identified in each branch (black: SBS, 

red: indel) are also shown. 

(B) Total number of cells with mutations (left panel) and number of unique 

mutations (right panel) in key cancer genes across the sample set (n = 632). ** 

represents genes significant (q<0.01 by dNdScv) when correction for multiple 

hypothesis testing is applied across all coding genes; * represents genes significant 

(q<0.01 by dSNdScv) when correction for multiple hypothesis testing is applied 

across known driver genes in lung cancers and normal squamous tissues (exact q 

values in Supplementary Table 4). 

(C) Fraction of cells with 0, 1, 2 or 3 driver mutations across the 16 subjects. 

(D) Distribution of driver mutations across cells in the cohort, coloured by type of 

mutation. Loss of heterozygosity (LOH) affecting driver mutations are also shown.   

(D) The frequency of driver mutations shared by more than 1 colony in a patient 

(dark blue) versus found in a single colony (light blue) across different cancer 

genes. 

 



Figure 4. Relationship of telomere lengths with mutation burden. 

Split by smoking status, panels show the relationship between telomere lengths 

(x axis) and mutation burden (y axis) for colonies with <10% contamination from 

the mouse feeder cells (n = 398). Individual cells are shown as points and fitted 

lines for each patient as coloured lines (slopes estimated using linear mixed effects 

models). The difference in slopes according to smoking status is highly significant 

(p=0.0009 for interaction term; LME models). One outlying cell in an ex-smoker 

with >10,000 mutations is excluded from the plot to improve visualisation. 

 

  



METHODS 

 

Subjects 

Subjects were recruited at University College London Hospitals (UCLH) or Great 

Ormond Street Hospital (GOSH) and gave written informed consent with approval 

of the Research Ethics Committee (REC reference 06/Q0505/12 and 11/LO/152, 

respectively). Details of the patients studied are listed in Supplementary Table 

1. All patients underwent bronchoscopy as part of their clinical care. In adults, the 

bronchoscopy procedure was performed for diagnostic or surveillance 

indications; in children, it was undertaken for investigational procedures on 

congenital tracheal abnormalities. For five patients with squamous cell 

carcinomas or carcinoma in situ, biopsy of normal bronchial tissue was taken from 

a site distant from the tumour. 

 

Single-cell-derived colonies 

Endobronchial biopsies were dissociated using 16 U/ml dispase in RPMI for 20 

minutes at room temperature. The epithelium was dissected away from the 

underlying stroma and foetal bovine serum (FBS) was added to a final 

concentration of 10%. Both the epithelium and stroma were combined and 

digested in 0.1% trypsin/EDTA at 37C for 30 minutes. The solution was 

neutralised with FBS to a final concentration of 10% and added to the neutralised 

dispase solution36. Cells were passed through a 100 m cell strainer and stained 

in sorting buffer (1x PBS, 1% FBS, 25 mM HEPES and 1 mM EDTA) with anti-CD45-

PE (BD Pharminogen 555483, 1:200), anti-CD31-PE (BD Pharminogen 555446, 

1:200), anti-EPCAM-APC (Biolegend 324208, 1:50) antibodies and DAPI (1 

g/ml). For endobronchial brushings, no dissociation was carried out, the cell 

suspension was passed through a 100 m cell strainer prior to staining. 

 

Cells were single cell sorted based on expression of CD45, CD31 and EPCAM, using 

a BD FACSAria Fusion. Each DAPI-CD45-CD31-EPCAM+ cell was sorted into 1 well 

of a 96-well plate, pre-coated with collagen I and mitotically inactivated 3T3-J2 

feeder cells. Cells were grown in fresh epithelial growth medium37 (DMEM: F12 at 

a 3:1 ratio with penicillin-streptomycin, 5% FBS, 5 M Y-27632, 5 g/ml insulin, 



25 ng/ml hydrocortisone, 0.125 ng/ml epidermal growth factor, 0.1 nM cholera 

toxin, 250 ng/ml amphotericin B and 10 g/ml gentamicin), which was 

supplemented for the first week of culture with epithelial growth medium that had 

been conditioned on growing epithelial cells and a final concentration of 10 M Y-

27632. Epithelial cells were grown in 96-well plates for 2 weeks before being 

passaged into 24-well plates and then into T25s. Epithelial cells were in culture 

for a total of about 25 days at 37C and 5% CO2 with 3 changes of medium per 

week. When cells reached 70-80% confluence in T25s, they were differentially 

trypsinised, making use of the greater sensitivity of feeder cells to trypsin 

compared with epithelial cells, generating a mostly pure population of epithelial 

cells. DNA was then extracted using the PureLink Genomic DNA Mini Kit 

(Invitrogen). 

 

Whole-genome sequencing 

Paired-end sequencing reads (150bp) were generated using the Illumina Hiseq X-

Ten platform for 662 samples of 16 patients. Target coverage was 15x per sample, 

except for 30x for 26 pilot samples derived from the first patient (PD26988). For 

10 patients, blood DNA samples were also sequenced as germline controls. For 3 

patients, bulk squamous cell carcinoma or carcinoma in situ (CIS) samples, which 

were collected at the same or nearby timepoints (~4 months after), were 

sequenced, including 2 CIS samples used in a previous study38 (PD38326a and 

PD38327a, which are CIS derived from PD30160 and PD34210, respectively). We 

also sequenced the whole genome of the pure mouse feeder cell layer. 

 

Discrimination of human and mouse sequences 

Bronchial epithelium samples were cultured on J2 mouse embryonic feeder 

fibroblast cells, which caused various degrees of contamination of mouse DNA in 

the samples from bronchial cell colonies. To remove mouse-derived sequencing 

reads, we used the Xenome algorithm39 with default setting (k-mer size = 25). The 

Xenome algorithm classifies fastq files into five categories: graft (human), host 

(mouse), ambiguous, both and neither.  We confirmed that most of sequencing 

reads of a pure human DNA sample were classified as human (98%) and those of 

the mouse feeder cell-derived DNA sample were rarely (2.8%) classified as human 



(Extended Figure 2A). In addition, we mapped sequencing reads of mouse feeder 

fibroblast DNA sample to the human genome reference, and confirmed that most 

of mouse-derived mutations have been successfully removed using Xenome for 

selected samples with mouse contamination (Extended Figure 2B). Although all 

samples were negative for Mycoplasma using standard laboratory testing, Xenome 

identified sequencing reads derived from the Mycoplasma genome in a subset of 

samples, assigning them to the “neither” classification.  

 

With testing complete, we ran Xenome for all bronchial epithelium samples, and 

aligned only reads classified as human to the human reference genome (NCBI 

build 37d5) using BWA-MEM. Metrics of sequencing coverage and proportion of 

human-derived reads are listed in Supplementary Table 2, and 20 samples with 

less than 8X average sequencing depth were excluded from further analysis due 

to lower estimated sensitivity, as described later  (Extended Figure 2E). 

 

Clonality of samples  

To ensure that each sample was single–cell-derived, we visually inspected the 

distribution of variant allele fractions (VAFs) of mutations: 632 clones had VAFs 

distributed around 50%, confirming that they were derived from a single cell, but 

10 clones had lower allele fractions, suggesting that these colonies were 

oligoclonal (Extended Figure 2D). These samples were removed from further 

analyses (Supplementary Table 2).  

 

Single base substitution calling 

Single base substitution (SBSs) were called using the Cancer Variants through 

Expectation Maximisation (CaVEMan) algorithm40 with copy number options of 

major copy number 5, minor copy number 2 and normal contamination 0.1. In 

order to allow the discovery of early embryonic mutations, we ran CaVEMan using 

an unmatched normal control. In addition to the default “PASS” filter, we removed 

variants with <120 median alignment score (ASMD) and those with >0 for the 

clipping index (CLPM) to remove mapping artefacts. Also, variants identified in 

the mouse feeder fibroblast DNA sample were removed, if they persisted in the 

call-set. Subsequently, for every mutation identified in any colonies from each 



patient, we counted the number of mutant and wild-type reads in all bronchial 

samples from the same patient using bam2R function of R package deepSNV41, 

where bases with ≥30 base quality and sequencing reads with ≥30 mapping 

quality were used. Further filters described below were applied to identify true 

somatic mutations and separate them from either germline variants or recurrent 

sequencing errors.  

 

To remove germline variants (binomial filter): 

We fitted a binomial distribution to the total variant counts and total depth at each 

SBS site across all samples from one patient. To differentiate somatic variants 

from germline variants, we used a one-sided exact binomial test, with the null 

hypothesis that these variants were drawn from a binomial distribution with a 

success probability of 0.5 (0.95 for sex chromosomes in males). The alternative 

hypothesis was that these variants were drawn from distributions with lower 

success probabilities. Variants with p-value >10-10 were considered as germline 

variants. 

 

To remove errors (beta-binomial filter): 

We fitted a beta-binomial distribution to the variant counts and depths of all SBSs 

across samples from the same patient for the remaining somatic variants. The 

beta-binomial was used as it captures the difference between artefactual variant 

sites and true somatic variants. Many artefacts appear to be randomly distributed 

across samples and can be modelled as drawn from a binomial distribution. True 

somatic variants will be present at high VAF in some samples, but absent in others, 

and are hence best captured by a highly over-dispersed beta-binomial. For each 

variant site, the maximum likelihood of the over-dispersion factor (ρ) was 

calculated using a grid-based method (ranging from a value of 10-6 to 10-0.05).  

Variants ρ>0.1 were filtered out and considered to be artefactual. The code for this 

filter is based on the Shearwater variant caller41. 

 

To remove mutations induced in vitro: 

We observed peaks of lower VAFs in a subset of samples (Extended Figure 2C), 

suggesting the existence of mutations arising during the in vitro expansion of the 



single cell. These peaks were more prominent in samples from children, 

suggesting that the number of this kind of mutation is relatively small – they 

would, however, be more prominent in samples with low true mutation burden, 

such as in children. We discarded mutations with median VAF ≤0.3 for autosomal 

regions and ≤0.6 for sex chromosomes across all samples from the same patient – 

these cut-offs were determined based on the observed distribution of VAFs here 

and a previous report20. 

 

We quantified sensitivity by measuring how well our algorithms called 

heterozygous germline polymorphisms in the colonies depending upon 

sequencing depth – since our colonies are single cell-derived, we would expect 

heterozygous germline SNPs to have the same variant allele fraction distribution 

as true somatic mutations in that original single cell. We find that a sequencing 

depth of 8x leads to an estimated sensitivity of 70-75%, rising to >95% at a 

sequencing depth of 15x. The majority of colonies we sequenced had depths of 

>15x, and we set a minimum cut-off of 8x depth for inclusion of a colony within 

the study (Extended Figure 2E). Finally, we visually inspected allelic counts of 

removed germline variants with ≥2 samples without any mutant reads, and 

rescued embryonic mutations. Somatic variants were annotated using 

ANNOVAR42. 

 

Indel calling 

Indels were called using cgpPindel43, and an unmatched normal sample was used 

as the germline control. Indels detected in mouse fibroblast feeder cells were 

removed as mouse-derived artefacts. For all indels, indel-positive or negative 

sequencing reads were counted using cgpVAF across all samples of each patient.   

 

To remove germline variants and recurrent sequencing errors, the same binomial 

and beta-binomial filters were used as described above for single base 

substitutions. We discarded mutations with median VAF ≤0.25 for autosomal 

regions and ≤0.5 for sex chromosomes across all samples from the same patient 

to remove mutations induced in vitro. 

 



Double-base substitution calling 

We first identified candidate double-base substitutions (DBSs) based on side-by-

side SBSs called using CaVEMan for each patient, and ran cgpVAF across all 

samples of each patients to remove those called in independent reads. DBSs with 

≥3 mutant reads in at least one sample were considered as true positives. 

Germline variants, errors and mutations induced in vitro were filtered as for single 

base substitutions and indels. 

 

Structural variant calling 

Structural variants (SVs) were called using the BRASS algorithm44, and matched 

normal samples, including blood samples and normal bronchial samples assigned 

on distantly located branches in phylogenetic trees, were used as controls. To 

remove germline SVs, we filtered SVs detected in the descendant colonies of both 

of the earliest two branches at the top of phylogenetic tree for each patient. If the 

earliest branch had ≥3 branches (polytomy), those detected in both descendent 

and non-descendent samples of the earliest branch with highest number, were 

removed. We further filtered SVs not identified using unmatched normal control, 

to remove SVs not filtered due to lower sequencing coverage of matched normal 

control sample. In addition, SVs detected in other patients were also removed as 

germline variants or errors. Finally, remaining all SV calls were manually 

inspected using IGV to confirm somatic variants.   

 

Copy number calling 

Copy number changes were called using the ASCAT algorithm45,46, and the same 

matched normal control samples as those used in SV analysis were used as 

germline controls. Copy number gains, losses and copy neutral LOHs were visually 

confirmed LogR and BAF plots by ascatNgs. For amplification, those with >100kb 

were visually confirmed using ascatNgs and JBrowse47.  

 

Mutational burden and estimation of effect of age, smoking 

For SBS, indels, DBSs, samples with ≥3 mutant reads and ≥0.2 VAF were 

considered to be mutated, and the number of each class of genetic lesions were 

counted for all bronchial cells. For SV, chromoplexy48 (Extended Figure 4C), 



chromothripsis49 (Extended Figure 4D) and translocation pairs with similar 

breakpoints were considered as single SVs. Genetic lesions identified both as SV 

and copy number changes were also considered as single events.  

 

Subsequently, a linear mixed-effect model was fitted to estimate the effect of age 

and smoking status on the number of SBSs or indels using ‘nlme’ R package 

(Supplementary Code). In addition to the fixed effects of age and smoking, 

patient was used as a grouping variable in the random effect, in which smoking 

status was used as a modifier of between-patient difference. Difference of within-

group heterogeneity (heteroscedasticity) according to smoking status was also 

fitted in this model. The intercept of this model was likely to be derived from 

embryonic mutations and mutations introduced in vitro. Models were fitted using 

maximum likelihood estimation, and nested models compared using likelihood 

ratio tests. 

 

Identification of near-normal lung cells 

We define cells as having a near-normal mutation burden if they have a mutation 

burden that is less than 2 non-smoker within-patient standard deviations (SDs) 

plus 2 non-smoker between-patient SDs above the estimated number of 

mutations accumulated at the age of that patient using LME model 

(Supplementary Code). The fraction of cells with near-normal mutation burden 

was compared between current smokers and ex-smokers with log-linear 

regression using the logarithm of the total number of cells sequenced per patient 

as an offset. 

 

Phylogenetic tree construction 

Phylogenetic trees were built using maximum parsimony using substitutions for 

each patient. First, the input matrix of mutations was made, in which samples with 

≥0.2 VAF and ≥3 mutant reads were considered as mutated samples and labelled 

as “1”, and remaining samples were labelled as “0”. Among samples labelled as “0”, 

samples (i) with ≤6X sequencing depth for each mutated base and (ii) ≥1 mutant 

reads were considered as undetermined and labelled “?”. For every individual, 

phylogenetic trees were constructed using the Camin-Sokal method of the Mix 



program of RPhylip package, and subsequently consensus trees of all the trees 

were constructed using the Consensus program of RPhylip. 

 

Subsequently, all mutations were reassigned to branches in the phylogenetic 

trees. If mutations were called in all the descendants of a given branch and in no 

samples that were not descendants of the branch, mutations were perfectly 

assigned to those branches. Given the existence of samples with relatively lower 

sequencing depth for each mutated position, we also assigned mutations to 

branches if mutations were called in all but one undetermined descendant 

labelled as “?” of a given branch, and all samples that were not descendants of the 

branch were wild-type (“0”). Given the smaller number of indels and DBSs, these 

were assigned to each branch using the tree defined from SBSs, rather than 

generating new trees for the other mutation types.  

 

Extraction of mutational signatures 

Extraction of SBS signatures 

To analyse mutational signatures for SBS, SBSs assigned to each branch of the 

phylogenetic trees were categorised into 288 subtypes, consisting of 6 mutation 

classes by 16 5’ and 3’ base contexts on transcribed strand, non-transcribed strand 

or intergenic region. Mutational signatures were extracted using the HDP 

package50 relying on the hierarchical Bayesian Dirichlet process 

(https://github.com/nicolaroberts/hdp). Due to the lack of reference signatures 

categorized into 288 subtypes, we conducted a de novo signature extraction. We 

included somatic mutations from squamous cell lung carcinomas sequenced by 

TCGA and from in vitro single cell culture controls as separate samples to maintain 

comparability with signatures already established in previous studies. For 

identified SBS signatures, signatures with ≥0.90 cosine similarity with reported 

signatures in terms of distribution to 96 or 192 subtypes24, were considered as 

same signatures, including SBS1, SBS4, SBS5, SBS16 and SBS18. For the remaining 

new signatures, the expectation-maximisation algorithm was used to deconvolute 

these signatures into above five signatures and other known signatures in lung 

cancers (SBS2, SBS8 and SBS13), because it is difficult to separate signatures that 

are strongly correlated across samples. If a signature reconstituted from the 



components that expectation-maximisation extracted (only including signatures 

that accounted for at least 10% of mutations in each sample to avoid over-fitting) 

had a ≥0.90 cosine similarity to the original HDP signature, the signature was 

presented as its expectation-maximisation deconvolution. Two HDP signatures 

met these criteria: one new signature was deconvoluted into a mixture of SBS4 

and SBS5; another new signature was deconvoluted in SBS2 and SBS13. After 

these analyses, 7 known and 2 new SBS signatures were identified. 

 

To validate these signatures identified using HDP, we also analysed SBS signatures 

using the ‘MutationalPatterns’ package20, which relies on Non-negative Matrix 

Factorisation (NMF). Optimal factorisation rank (rank = 7) was determined based 

on the slope of cophenetic correlation coefficient. MutationalPatterns identified 

similar signatures with SBS5 (Signature A), SBS4 (Signature B), Sig-B (Signature 

D), SBS18 (Signature E), SBS1 (Signature F), SBS2, SBS13 (Signature G), 

(Extended Figure 5A-B).  

 

Extraction of indel and DBS signatures 

For indels and DBS, each type of genetic alteration assigned to each branch of the 

phylogenetic trees was categorised into 83 and 78 subtypes as previously 

reported24. First, the algorithm was conditioned on the set of mutational 

signatures that have been detected in lung cancers (ID1, ID2, ID3, ID5, ID6, ID8, 

ID9, DBS2, DBS4, DBS5, DBS6, DBS11). This allows simultaneous discovery of 

known and new signatures. For known signatures, signatures identified by HDP 

with ≥0.90 cosine similarity with corresponding reported signatures were 

accepted as known signatures. Deconvolution of new signatures to above known 

signatures was also performed, and one new indel signature was deconvoluted in 

ID5 and ID8.  Finally, 10 known and 1 new signatures were identified. 

 

Analysis of A>G transcription strand bias 

First, we measured distance from mutations to nearest transcription start sites 

(TSSs) of the all expressed genes in lung, which was defined as those with median 

of  ≥1 Transcripts Per Million (tpm) in lung samples in GTEx database 

(https://gtexportal.org/home/). Mutations in regions of bidirectional 



transcription were excluded from the further analysis. We tiled 10 kilobases up 

and downstream of the TSSs into 1kbp bins, and counted the number of A>G 

mutations on transcribed and untranscribed regions in each tile, which were 

further divided by average of bins in intergenic regions. 

 

Analysis of driver variants 

To systematically identify genes under positive selection in normal bronchial 

epithelium, we used the dN/dS method12. We performed exome-wide dN/dS 

analysis and also analysed global dN/dS ratios for driver genes (n = 86) reported 

in lung cancer12,13,18,26 or normal skin/oesophagus tissues27–29 using dNdScv 

(Supplementary Table 3). Genes with q-value ≤0.2 were reported as driver genes 

(Supplementary Tables 4-5). Finally, hot-spot mutations reported in COSMIC for 

≥4 patients were also considered as driver mutations, in addition to those in the 7 

driver genes identified by dNdScv (Figure 3B). Proportion of shared/private 

mutations was calculated for patients other than PD30160 (which had a low 

number of sequenced samples (n = 13)).  For TP53 and NOTCH1 genes, 

distributions of mutations were compared between bronchial cells and lung 

squamous cell carcinoma13 (Extended Figure 9B). 

 

To estimate the effect of smoking status on the number of driver mutations, a 

generalized linear mixed-effects model was fitted using ‘lme4’ R package 

(Supplementary Code). Patient was modelled as a random effect, and fixed effect 

of age, smoking status and total mutation burden were fitted into the model.  

 

Telomere length estimation 

The average telomere length of bronchial epithelium cells were estimated from 

the whole-genome sequencing data using Telomerecat51. Considering the 

similarity of telomere sequences between human and mouse, we aligned all 

sequencing reads to the human reference genome using BWA-MEM without using 

Xenome, and subsequently ran Telomerecat on the bam files. Samples with more 

than 10% reported mouse contamination were excluded from further analysis to 

prevent a possible effect of mouse cells on telomere length. The average telomere 

length for the mouse fibroblast feeder samples was estimated at 1745bp, which is 



in range with human telomere length estimates, so a low level of mouse 

contamination will not affect the estimates substantially.  

 

Subsequently, a linear mixed-effect model was fitted to estimate the effect of 

telomere length on the number of SBSs using ‘lme4’ R package (Supplementary 

Code).  Patient was modelled as a random effect, and fixed effect of telomere 

length and its interaction with smoking status as well as fixed effect of age and 

smoking status were fitted into the model.  

 

DATA AVAILABILITY 

Sequencing data have been deposited at the European Genome-Phenome Archive 

(http://www.ebi.ac.uk/ega/) under accession numbers EGAD00001005193. 

Somatic mutation calls, including single base substitutions, indels and structural 

variants, from all 632 samples have been deposited on Mendeley Data with the 

identifier: http://dx.doi.org/10.17632/b53h2kwpyy.2. 

 

CODE AVAILABILITY 

Detailed method and custom R scripts for the analysis of mutational burden in 

bronchial epithelium are available in Supplementary Code. Other packages used 

in the analysis are listed below: 

 R: version 3.5.1 

 BWA-MEM: version 0.7.17-r1188 (https://sourceforge.net/projects/bio-

bwa/) 

 CaVEMan: version 1.11.2 (https://github.com/cancerit/CaVEMan) 

 Pindel: version 2.2.5 (https://github.com/cancerit/cgpPindel) 

 Brass: version 6.1.2 (https://github.com/cancerit/BRASS) 

 ASCAT NGS: version 4.1.2 (https://github.com/cancerit/ascatNgs) 

 Xenome: 

(https://github.com/data61/gossamer/blob/master/docs/xenome.md) 

 deepSNV: version 1.28.0 

(https://bioconductor.org/packages/release/bioc/html/deepSNV.html) 

 ANNOVAR: (http://wannovar.wglab.org/) 

 IGV: (http://software.broadinstitute.org/software/igv/)  

http://www.ebi.ac.uk/ega/
http://dx.doi.org/10.17632/b53h2kwpyy.2
https://sourceforge.net/projects/bio-bwa/
https://sourceforge.net/projects/bio-bwa/
https://github.com/cancerit/CaVEMan
https://github.com/cancerit/cgpPindel
https://github.com/cancerit/BRASS
https://github.com/cancerit/ascatNgs
https://github.com/data61/gossamer/blob/master/docs/xenome.md
https://bioconductor.org/packages/release/bioc/html/deepSNV.html
http://wannovar.wglab.org/
http://software.broadinstitute.org/software/igv/


 JBrowse: (https://jbrowse.org/) 

 cgpVAF: (https://github.com/cancerit/vafCorrect)  

 RPhylip: version 0.1.23 (http://www.phytools.org/Rphylip/) 

 hdp: version 0.1.5 (https://github.com/nicolaroberts/hdp) 

 MutationalPatterns: version 1.8.0 

(https://bioconductor.org/packages/release/bioc/html/MutationalPatterns.

html) 

 dNdScv: version 0.0.1 (https://github.com/im3sanger/dndscv) 

 Telomerecat: version 3.1.2 (https://github.com/jhrf/telomerecat) 
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EXTENDED FIGURE LEGENDS 

 

Extended Figure 1. Flow-sorting strategy of single basal bronchial epithelial 

cells. 

(A) Sorting of EpCam+ epithelial cells from human airway biopsies. Human 

hematopoietic and endothelial cells were stained with antibodies against CD45 

and CD31, respectively. Within the population of cells negative for those markers, 

EpCam-expressing cells were gated. Single, live (DAPI-negative) cells were flow 

sorted from this population into individual wells of 96-well plates. 

(B) qPCR analysis of clonally derived airway epithelial cell cultures. Airway basal 

cells express integrin alpha 6 (ITGA6), keratin 5 (KRT5), e-cadherin (CDH1) and 

TP63. Expression is shown in clonally derived cell cultures (n = 13 from 3 donors, 

coloured blue, green and orange) compared to a control bulk human bronchial 

epithelial cell culture expanded in the same culture conditions and a lung 

fibroblast cell culture that served as a negative control. Centre values and error 

bars indicate mean and standard error of the mean, respectively. Conditions in 

which no expression was detected are shown as 0. 

(C) Colony-forming efficiency of CD45-/CD31-/EPCAM+ cells after single cell 

sorting from endobronchial biopsy samples (n = 16). Centre values and error bars 

indicate mean and standard error of the mean, respectively. For one ex-smoker, 

EPCAM was not used to select cells: only CD45-/CD31- cells were sorted – as 

expected, this is the patient with the lowest colony-forming efficiency. 

 

Extended Figure 2. Quality assurance of mutation calls. 

(A) Stacked bar chart showing the proportion of reads attributed to the human 

genome, mouse genome, both, neither or with ambiguous mapping for the pure 

mouse fibroblast feeder line (left) or a pure human sample (right), assessed with 

the Xenome pipeline39. 

(B) Clean-up of mutation calls using the xenome pipeline for one of the samples 

more heavily contaminated by the mouse feeder layer. The Venn diagram on the 

left shows the overlap in mutation calls before and after removing non-human 

reads by xenome.  



(C) Histograms of variant allele fraction (VAF) for two representative colonies in 

the sample set. The plot on the left shows a tight distribution around 50%, as 

expected for a colony derived from a single cell without contamination. The plot 

on the right shows a bimodal distribution with one peak at 50% (mutations 

present in the original basal cell) and a second peak at ~25%, likely representing 

mutations acquired in vitro during colony expansion. These second peaks at <50% 

are more evident in colonies from the children, due to the low number of 

mutations in the original basal cell. 

(D) Histogram of variant allele fraction (VAF) for a colony seeded by more than 

one basal cell, leading to a peak <<50%. 

(E) Estimated sensitivity of mutation calling according to sequencing depth. 

Heterozygous germline polymorphisms were identified in each subject – for each 

colony sequenced, we calculated the fraction of these polymorphisms recalled by 

our algorithms. 

(F) Comparison of mutation burden in normal bronchial epithelial cells that 

neighbour a carcinoma in situ (CIS) versus distant from it in 5 patients. Box-and-

whisker plots show distribution of mutation burden per colony within each 

subject, with the boxes indicating median and interquartile range, and the 

whiskers denoting the range. The overlaid points are the observed mutation 

burden of individual colonies. 

 

Extended Figure 3. Colonies with near-normal mutation burden. 

(A) Density distribution of mutation burden in cells from ex-smokers (green) and 

current smokers (purple). The black vertical line shows the threshold for near-

normal mutation burden derived for each patient. The x axis is on a log scale. Note 

the frequently bimodal distribution of mutation burden, especially in the ex-

smokers, with the modes separated at the threshold for near-normal mutation 

burden. 

(B) Flow cytometric analysis of clones for expression of keratin 5 (KRT5), EPCAM, 

integrin 6 (ITGA6), podoplanin (PDPN), NGFR and CD45/CD31. Lung fibroblasts 

are included as a comparison. Fluorescence minus one (FMO) shown. Plots for one 

clone with near-normal mutation burden and one with increased burden are 

shown, representative of 5 clones from 1 patient.  



(C) Brightfield image of expanded clones at passage 3, showing cobblestone 

epithelial morphology, representative of 5 clones from 1 patient. A clone with 

elevated mutation burden is shown in the top panels; a clone from an ex-smoker 

with near-normal mutation burden is shown in the bottom panels. Left image x10 

magnification, scale bar = 200 m and right image x20 magnification, scale bar = 

100 m. 

 

Extended Figure 4. Indels, copy number changes and structural variants in 

normal bronchial epithelial cells. 

(A) Relationship of burden of indels per cell with age, with points representing 

individual colonies (n = 632), coloured by smoking status. The black line 

represents the fitted effect of age on indel burden, estimated from linear mixed 

effects models after correction for smoking status and within-patient correlation 

structure. The blue shaded area represents the 95% confidence interval for the 

fitted line. 

(B) Stacked bar plot showing the distribution of colonies with 0-7 copy number 

changes and structural variants across the 16 subjects. 

(C) Three examples of chromoplexy in normal bronchial cells. Structural variants 

are shown as coloured arcs joining two positions in the genome around the 

circumference. The chromoplexy instances all consist of 3 translocations, in 

purple. 

(D) An example of chromothripsis in a cell from an 11-month old infant. The plot 

on the right shows copy number of genomic windows in the relevant region of 

chromosome 1 (black points), with the lines and arcs denoting positions of 

observed structural variants. 

 

Extended Figure 5. Comparison of mutational signatures extracted using 

two algorithms. 

(A) Trinucleotide contexts for the signatures extracted by the hierarchical 

Dirichlet process (HDP) on the left and MutationalPatterns non-negative matrix 

factorisation on the right. The six substitution types are shown in the panels 

across the top of each signature. Within each panel, the trinucleotide context is 

shown as four sets of four bars, grouped by whether an A, C, G or T respectively is 



5’ to the mutated base, and within each group of four by whether A, C, G or T is 3’ 

to the mutated base. Where signatures show high cosine similarity scores between 

algorithms, they are lined up horizontally. We note that MutationalPatterns’ 

Signature C does not have a match in the signatures extracted by the hierarchical 

Dirichlet process algorithm, but appears very similar to Signature A in 

MutationalPatterns (or SBS-5 from the hierarchical Dirichlet process). This means 

it likely represents over-splitting of the signatures. 

(B) The heatmap shows the cosine similarities of signatures extracted by 

MutationalPatterns with those extracted by the hierarchical Dirichlet process 

(HDP). Only cosine similarity scores >0.75 are coloured. 

(C) Scatterplots showing the fraction of mutations in each sample (n = 632) 

assigned to each signature by the hierarchical Dirichlet process (HDP; x axis) 

versus the MutationalPatterns algorithm (y axis). Correlation values quoted are 

Pearson’s correlation coefficients, R2. 

(D) Transcription strand bias of A>G mutations in N[A]T context before and after 

transcription start sites. Note the absence of transcriptional strand bias in 

intergenic regions, but evidence for both transcription-coupled damage and 

repair after the transcription start site, applying similarly in both never smokers 

and ex-/current smokers.    

 

Extended Figure 6. Phylogenetic trees of 10 subjects. 

Phylogenetic trees showing clonal relationships among normal bronchial cells in 

the 10 subjects not shown in Figure 3A. Branch lengths are proportional to the 

number of mutations (x axis) specific to that clone/subclone. Each branch is 

coloured by the proportion of mutations on that branch attributed to the various 

single base substitution signatures. 

 

Extended Figure 7. Indel signatures in the sample set.  

(A) Five indel signatures were extracted by the hierarchical Dirichlet process. 

Contribution of different types of indels to each signature are shown, grouped by 

whether variants are deletions or insertions; size of event; whether they occur at 

repeat units; and the sequence content of the indel. All indel signatures have been 

discovered in cancer genomes24. 



(B) Stacked bar-plot showing the proportional contribution of mutational 

signatures to indels across the 632 normal bronchial cells, extracted using a 

hierarchical Dirichlet process. Within each patient, colonies are sorted from left to 

right by increasing indel burden (bar chart in dark grey above coloured signature 

attribution stacks).  

 

Extended Figure 8. Double base substitution signatures in the sample set. 

(A) Six double base substitution (DBS) signatures were extracted by the 

hierarchical Dirichlet process. Contribution of different types of DBS to each 

signature are shown, grouped by the sequence that is mutated, and what it is 

mutated to. Five of the signatures have been observed in cancer genomes24, with 

one (DBS Sig-C) a novel signature extracted here. 

(B) Stacked bar-plot showing the proportional contribution of mutational 

signatures to double base substitutions across the 632 normal bronchial cells, 

extracted using a hierarchical Dirichlet process. Note that some of the colonies in 

children have no double base substitutions. Within each patient, colonies are 

sorted from left to right by increasing DBS burden (bar chart in dark grey above 

coloured signature attribution stacks).  

 

Extended Figure 9. Driver mutations in normal bronchial epithelium. 

(A) Stick plots showing distribution of mutations in TP53, NOTCH1 and other 

genes that were significantly mutated in our sample set – mutations are coloured 

by type. The gene structure is shown horizontally in the centre of each plot with 

domains as coloured bars. Above the gene are mutations in this sample set; below 

the gene are the mutations found in squamous cell carcinomas from the TCGA 

sample set. 

(B) Fraction of cells with driver mutations in TP53 (left), NOTCH1 (middle) or all 

other significant cancer genes (right), split by smoking status. 

 

Extended Figure 10. Relationship of telomere lengths with age. 

Scatter-plot of estimated telomere lengths (y axis) against age of subject (x axis). 

Individual points represent colonies (with <10% DNA deriving from the mouse 



feeder layer). Cells with near-normal mutation burden are coloured a darker 

green. 

 


