50 research outputs found

    The Associations of Maternal and Neonatal Vitamin D with Dental Development in Childhood

    Get PDF
    Background: Vitamin D influences the formation and mineralization of teeth. Objective: To investigate the association of maternal and neonatal vitamin D concentrations with the dental development of 10-y-old children, in a population-based prospective cohort study among 3,770 mothers and children in the Netherlands. Methods: Maternal venous blood samples were collected in the second trimester (median 20.4 weeks of gestation; range: 18.5-23.2 wk) whereas umbilical cord blood samples were collected immediately after delivery (median 40.1 weeks of gestation; range 35.9-42.3 wk). Dental development was defined using the Demirjian method. Multivariate regression models were built to analyze the studied associations. Results: High concentrations of 25-hydroxyvitamin D [25(OH)D] during midpregnancy (beta: -0.04; 95% CI: -0.08, -0.01) and at birth (beta: -0.06; 95% CI: -0.10, -0.02) were associated with a lower dental age in children. The children of mothers with severe vitamin D deficiency [25(OH)D /=75.0 nmol/L). Children with vitamin D deficiency [25(OH)D 25.0-49.9 nmol/L] at birth exhibited a higher dental age (beta: 0.11; 95% CI: 0.01, 0.20), higher developmental stages of the mandibular second premolar (beta: 0.27; 95% CI: 0.02, 0.51), and higher developmental stages of the mandibular second molar (beta: 0.24; 95% CI: 0.00, 0.48) compared with children with sufficient-to-optimal values of 25(OH)D (>/=50.0 nmol/L) at birth. Conclusion: Higher maternal and neonatal 25(OH)D concentrations are associated with decelerated dental development in childhood. The lower the vitamin D level during midpregnancy or at birth, the higher the dental age of children, and the higher the developmental stages of the mandibular teeth

    Associations of maternal and paternal blood pressure patterns and hypertensive disorders during pregnancy with childhood blood pressure

    Get PDF
    Background-Hypertensive disorders in pregnancy may affect the cardiovascular risk of offspring. We examined the associations of maternal blood pressure throughout pregnancy and hypertensive disorders in pregnancy with childhood blood pressure of offspring. Specific focus was on the comparison with paternal blood pressure effects, the identification of critical periods, and the role of birth outcomes and childhood body mass index in the observed associations. Methods and Results-This study was embedded in a population-based prospective cohort study among 5310 mothers and fathers and their children. We measured maternal blood pressure in each trimester of pregnancy and paternal blood pressure once. Information about hypertensive disorders in pregnancy was obtained from medical records. We measured childhood blood pressure at the median age of 6.0 years (95% range 5.7-8.0 years). Both maternal and paternal blood pressure were positively associated with childhood blood pressure (all P < 0.05), with similar effect estimates. Conditional regression analyses showed that early, mid-, and late-pregnancy maternal blood pressure levels were all independent and positively associated with childhood blood pressure, with the strongest effect estimates for early pregnancy. Compared with children of mothers without hypertensive disorders in pregnancy, children of mothers with hypertensive disorders in pregnancy had higher diastolic blood pressure by a standard deviation score of 0.13 (95% CI 0.05-0.21). The observed associations were not materially affected by birth outcomes and childhood body mass index. Conclusions-Both maternal and paternal blood pressure affects childhood blood pressure, independent of fetal and childhood growth measures, with the strongest effect of maternal blood pressure in early pregnancy

    Childhood Estimates of Glomerular Filtration Rate Based on Creatinine and Cystatin C: Importance of Body Composition

    Get PDF
    __Background:__ Creatinine and cystatin C concentrations are commonly used to estimate glomerular filtration rate (eGFR) in clinical practice and epidemiological studies. To estimate the influence of different body composition measures on eGFR from creatinine and cystatin C blood concentrations, we compared the associations of different anthropometric and body composition measures with eGFR derived from creatinine (eGFRcreat) and cystatin C (eGFRcystC) blood concentrations. __Methods:__ In a population-based cohort study among 4,305 children aged 6.0 years (95% range 5.7-8.0), we measured weight and height and calculated body mass index (BMI) and body surface area (BSA), and lean and fat mass using dual-energy X-ray absorptiometry. At the same age, we measured creatinine and cystatin C blood concentrations and estimated the GFR. __Results:__ Correlation between eGFR based on creatinine and cystatin C concentrations was r = 0.40 (p value <0.01). Higher BMI was associated with lower eGFRcystC but not with eGFRcreat. Higher BSA was associated with higher eGFRcreat and lower eGFRcystC (p value <0.05). Lean and fat mass percentages were associated with eGFRcreat but not with eGFRcystC. __Conclusion:__ Our findings suggest that both eGFRcreat and eGFRcystC are influenced by BMI and BSA. eGFRcreat is more strongly influenced by body composition than eGFRcystC

    Vitamin D and risk of pregnancy related hypertensive disorders: Mendelian randomisation study

    Get PDF
    Objective To use mendelian randomisation to investigate whether 25-hydroxyvitamin D concentration has a causal effect on gestational hypertension or pre-eclampsia. Design One and two sample mendelian randomisation analyses. Setting Two European pregnancy cohorts (Avon Longitudinal Study of Parents and Children, and Generation R Study), and two case-control studies (subgroup nested within the Norwegian Mother and Child Cohort Study, and the UK Genet

    Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

    Get PDF
    Abstract: Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria

    Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals

    Get PDF
    A large-scale GWAS provides insight on diabetes-dependent genetic effects on the glomerular filtration rate, a common metric to monitor kidney health in disease.Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.</p

    Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

    Get PDF
    Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria

    Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

    Get PDF
    Publisher Copyright: © 2019, The Author(s).Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.Peer reviewe
    corecore