3,722 research outputs found

    MHD turbulence and heating of the open field-line solar corona

    Get PDF
    This paper discusses the possibility that heating of the solar corona in open field-line regions emanating from coronal holes is due to a nonlinear cascade, driven by low-frequency or quasi-static magnetohydrodynamic fluctuations. Reflection from coronal inhomogeneities plays an important role in sustaining the cascade. Physical and observational constraints are discussed. Kinetic processes that convert cascaded energy into heat must occur in regions of turbulent small-scale reconnection, and may be similar in some respects to ion heating due to intense electron beams observed in the aurora

    Determination of Gd concentration profile in UO2-Gd2O3 fuel pellets

    Full text link
    A transversal mapping of the Gd concentration was measured in UO2-Gd2O3 nuclear fuel pellets by electron paramagnetic resonance spectroscopy (EPR). The quantification was made from the comparison with a Gd2O3 reference sample. The nominal concentration in the pellets is UO2: 7.5 % Gd2O3. A concentration gradient was found, which indicates that the Gd2O3 amount diminishes towards the edges of the pellets. The concentration varies from (9.3 +/- 0.5)% in the center to (5.8 +/- 0.3)% in one of the edges. The method was found to be particularly suitable for the precise mapping of the distribution of Gd3+ ions in the UO2 matrix.Comment: 10 pages, 5 figures, 2 tables. Submitted to Journal of Nuclear Material

    Apparent suppression of turbulent magnetic dynamo action by a dc magnetic field

    Full text link
    Numerical studies of the effect of a dc magnetic field on dynamo action (development of magnetic fields with large spatial scales), due to helically-driven magnetohydrodynamic turbulence, are reported. The apparent effect of the dc magnetic field is to suppress the dynamo action, above a relatively low threshold. However, the possibility that the suppression results from an improper combination of rectangular triply spatially-periodic boundary conditions and a uniform dc magnetic field is addressed: heretofore a common and convenient computational convention in turbulence investigations. Physical reasons for the observed suppression are suggested. Other geometries and boundary conditions are offered for which the dynamo action is expected not to be suppressed by the presence of a dc magnetic field component.Comment: To appear in Physics of Plasma

    A reduced magnetohydrodynamic model of coronal heating in open magnetic regions driven by reflected low-frequency waves

    Get PDF
    A reduced magnetohydrodynamic (RMHD) description is employed to examine a suggestion made by W. H. Matthaeus and colleagues in 1999 that coronal heating might be sustained by a cascade of low-frequency MHD turbulence. Here RMHD simulations show that the low-frequency cascade to high transverse wavenumbers can be driven by an externally maintained flux of low-frequency propagating Alfvén waves, in combination with reflection caused by an inhomogeneous background medium. The simulations show that the suggestions made previously on the basis of a phenomenology are indeed realizable. In addition, the effect is seen to sensitively depend on the presence of reflection, as the background turbulence level needed to maintain the cascade can be sustained only when reflection is imposed. The steady level of turbulence is insensitive to the initial seed turbulence level (provided it is nonzero). Consequences of this model for realistic models of coronal heating in open field-line regions are discussed

    Facing the small aortic root in aortic valve replacement: Enlarge or not enlarge?

    Get PDF
    In patients with severe aortic stenosis, aortic valve replacement (AVR) should aim to implant a prosthesis of adequate size to effectively eliminate left ventricular obstruction and avoid the risk of patient–prosthesis mismatch (PPM). PPM has been demonstrated to be associated with increased mortality, decreased exercise tolerance, and reduced left ventricular mass regression after AVR for aortic stenosis

    Magnetic helicity and cosmological magnetic field

    Full text link
    The magnetic helicity has paramount significance in nonlinear saturation of galactic dynamo. We argue that the magnetic helicity conservation is violated at the lepton stage in the evolution of early Universe. As a result, a cosmological magnetic field which can be a seed for the galactic dynamo obtains from the beginning a substantial magnetic helicity which has to be taken into account in the magnetic helicity balance at the later stage of galactic dynamo.Comment: 11 pages, no figures; v3: new references and new paragraphs added, discussion extended, some mistypings correcte

    Finite driving rate and anisotropy effects in landslide modeling

    Full text link
    In order to characterize landslide frequency-size distributions and individuate hazard scenarios and their possible precursors, we investigate a cellular automaton where the effects of a finite driving rate and the anisotropy are taken into account. The model is able to reproduce observed features of landslide events, such as power-law distributions, as experimentally reported. We analyze the key role of the driving rate and show that, as it is increased, a crossover from power-law to non power-law behaviors occurs. Finally, a systematic investigation of the model on varying its anisotropy factors is performed and the full diagram of its dynamical behaviors is presented.Comment: 8 pages, 9 figure

    Energy spectrum of turbulent fluctuations in boundary driven reduced magnetohydrodynamics

    Full text link
    The nonlinear dynamics of a bundle of magnetic flux ropes driven by stationary fluid motions at their endpoints is studied, by performing numerical simulations of the magnetohydrodynamic (MHD) equations. The development of MHD turbulence is shown, where the system reaches a state that is characterized by the ratio between the Alfven time (the time for incompressible MHD waves to travel along the field lines) and the convective time scale of the driving motions. This ratio of time scales determines the energy spectra and the relaxation toward different regimes ranging from weak to strong turbulence. A connection is made with phenomenological theories for the energy spectra in MHD turbulence.Comment: Published in Physics of Plasma
    corecore