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ABSTRACT
A reduced magnetohydrodynamic (RMHD) description is employed to examine a suggestion made by

W. H. Matthaeus and colleagues in 1999 that coronal heating might be sustained by a cascade of low-
frequency MHD turbulence. Here RMHD simulations show that the low-frequency cascade to high
transverse wavenumbers can be driven by an externally maintained Ñux of low-frequency propagating

waves, in combination with reÑection caused by an inhomogeneous background medium. TheAlfve� n
simulations show that the suggestions made previously on the basis of a phenomenology are indeed rea-
lizable. In addition, the e†ect is seen to sensitively depend on the presence of reÑection, as the back-
ground turbulence level needed to maintain the cascade can be sustained only when reÑection is
imposed. The steady level of turbulence is insensitive to the initial seed turbulence level (provided it is
nonzero). Consequences of this model for realistic models of coronal heating in open Ðeld-line regions
are discussed.
Subject headings : MHD È Sun: corona È Sun: magnetic Ðelds È turbulence

1. INTRODUCTION

There are at present several theoretical models that
employ transport and dissipation of magnetohydrodynamic
(MHD) scale Ñuctuations to explain the heating of the open
Ðeld-line corona. One class of models relies on high-
frequency Ñuctuations (McKenzie, Banaszkiewicz, &
Axford 1995 ; Axford & McKenzie 1997) that are easily
transported through the lower corona and efficiently dissi-
pated by cyclotron damping within 1È2 This mecha-R

_
.

nism requires generation of copious quantities of MHD
waves at frequencies approaching the cyclotron frequency
and is direct in the sense that the energy removed from the
waves goes directly into heat. Another approach, known as
““ phase mixing ÏÏ (Heyvaerts & Priest 1983), greatly ampliÐes
dissipation of propagating waves through their interaction
with a (quasi-static) sheared background medium. This
essentially linear mechanism generates strong currents and
enhanced heating in a wide variety of circumstances. Reso-
nant absorption provides yet another way to heat coronal
plasma using waves (Hollweg 1984 ; Davila 1987 ; Ofman,
Davila, & Steinolfson 1994). A fourth approach, and the
one we deal with in greater detail in this paper, involves
driving of turbulence by reÑection of low-frequency MHD
waves. A distinguishing feature is that the wave energy is
damped indirectly since it must pass through the turbulence
to reach the dissipative scales. This model was presented
recently in the context of a phenomenological description of
both the turbulence and the wave reÑection (Matthaeus et
al. 1999 ; Oughton et al. 1999).

Coronal heating associated with nonlinear MHD e†ects,
including cascade and reduced magnetohydrodynamic
(RMHD) models, has been widely discussed in connection
with closed Ðeld-line regions, especially loops &(Go� mez

1992 ; Heyvaerts & Priest 1992 ; Hendrix &Ferro-Fonta� n
van Hoven 1996 ; Einaudi et al. 1996 ; Dmitruk, Go� mez,
& DeLuca 1998). The critical di†erence in open-Ðeld

regions is that the Ñuctuations can escape from the region in
which heating is required through wave propagation. Since
waves that are unidirectionally traveling exhibit no MHD
nonlinear couplings in the incompressible limit (with
uniform background Ðelds), there is a possibility that energy
escapes from the top rapidly enough that turbulence in the
region of interest dies out in a Ðnite time. This might occur
because the couplings associated with the wave(s) that
excite the turbulence are too weak to build up or replenish
the turbulence before the wave energy transits the region of
interest. This is essentially a key criticism of wave heating
on open Ðeld lines as expressed, for example, by Parker
(1991) ; however, Berger & Title (1996) later estimated that
the wave Ñux from the photosphere was in fact adequate. In
any case, the process of reÑection provides a possible way
out of this difficulty. If sufficient wave energy is reÑected,
the box will contain more equal amounts of counter-
propagating Ñuctuations. These exhibit more robust non-
linear couplings than do waves propagating in one
direction. Thus, reÑection may cause a more rapid replen-
ishment of the background turbulence.

In this paper, the nonlinear low-frequency cascade is rep-
resented by a driven, dissipative reduced MHD model at
high Reynolds numbers. In contrast to our earlier treatment
(Matthaeus et al. 1999), this permits a direct computation of
the cascade, albeit in an idealized context, which supplants
the earlier phenomenological formulation of turbulence
heating rates. Since the latter presupposes a strong self-
similar cascade, the present approach will permit a more
sensitive evaluation of the competition between wave pro-
pagation and nonlinear e†ects. One of the central goals here
is to investigate whether reÑection can replenish requisite
levels of turbulence needed to sustain signiÐcant rates of
local heating. We will thus be able to corroborate our
earlier conclusions concerning the dependence of steady
heating rates on the strength of reÑection. However, the
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present model is still not a realistic model of the corona, as
we are averaging e†ects such as reÑection, transmission, and
energy supply over the volume of our ““ box.ÏÏ This region is
taken to be a representative sample of the corona, extending
from above the transition region, perhaps from 1.05 to 2

The model is described in more detail below.R
_

.

2. MODEL

The physical picture we consider has been described
previously by Matthaeus et al. (1999) and is indicated in
Figure 1. Ñuctuations, generated in the photosphereAlfve� nic
and/or chromosphere, are launched into an open Ðeld-line
region of the corona. While propagating upward, they expe-
rience (non-WKB) reÑections o† the gradients in the back-
ground density and magnetic Ðelds (Zhou & Matthaeus
1990b ; Velli 1993). This yields a population of counter-
propagating waves that couple nonlinearly with quasiÈtwo-
dimensional modes. The (driven) quasiÈtwo-dimensional
dynamics is such that energy cascades to small perpendicu-
lar length scales (relative to where it is deposited asB0),
heat. The energy cascade is likely to involve the formation
of current sheets and the (successive) reconnection of trans-
verse magnetic islands (e.g., Hossain, Vahala, & Montgo-
mery 1985 ; Matthaeus & Lamkin 1986). Allowance is also
made for waves propagating out of the ““ top ÏÏ of the heating
region.

To fully investigate the feasibility of driving coronal
heating in this way, the viability of a chain of events must be

established, including (1) identiÐcation of an energy source,
perhaps in the photospheric network, that can produce the
requisite Ñux of low-frequency waves ; (2) examination of the
transport properties in the chromosphere and transition
region to determine if a sufficient fraction of these waves
can be transmitted to the corona ; (3) determination that
coronal turbulence and the nonlinear cascade can be sus-
tained by driving with low-frequency waves from below; (4)
that the level and type of reÑections required for sustenance
of turbulence is consistent with the large-scale structure of
the corona ; and (5) that appropriate kinetic processes in the
coronal plasma are available to convert the MHD-scale
turbulent energy into thermal degrees of freedom in such a
way as to produce the observed features of coronal heating
(see, e.g., Axford & McKenzie 1997 ; Leamon et al. 2000).
Each aspect of this proposed process requires in-depth
study. Here we concentrate on furthering our understand-
ing of the third step in this process.

SpeciÐcally, we investigate some of the conditions for sus-
taining coronal heating using the low-frequency wave-
driven quasiÈtwo-dimensional turbulent cascade scenario
outlined above. We Ðnd that reÑection is essential if the
system is to maintain a steady turbulent heating rate, as is a
seed level of turbulence. However, as we will show, the time-
asymptotic dissipation rate is quite insensitive to the initial
turbulence level, as long as it is nonzero (as is likely to be
the case above a turbulent photosphere). It is especially
important that the model be able to replenish the zero-

FIG. 1.ÈSketch of the physics associated with the model for heating of coronal hole plasma. Dashed lines emphasize the periodic boundary conditions.



No. 1, 2001 MODEL OF CORONAL HEATING IN MAGNETIC REGIONS 567

frequency portion of the Ñuctuations. Known as two-
dimensional Ñuctuations, these excitations do not transport
energy out of the box since they are nonpropagating (we are
assuming that transport by the mean Ñow is negligible at
these heights). Equally important is that two-dimensional
Ñuctuations (in the incompressible limit) engage in a robust
cascade process that is entirely insensitive to the strong
vertical magnetic Ðeld. This corresponds to a large Alfve� n
speed that transports wave energy out of the box while also
suppressing nonresonant nonlinear couplings. Two-
dimensional Ñuctuations also act as catalysts for the reso-
nant transfer of higher frequency Ñuctuations to small
transverse scales (e.g., Shebalin, Matthaeus, & Montgomery
1983 ; Oughton, Priest, & Matthaeus 1994 ; Oughton,
Ghosh, & Matthaeus 1998 ; Kinney & McWilliams 1998).
All these e†ects are related to the nonpropagating character
of the two-dimensional Ñuctuations, and, for these reasons,
the very low parallel wavenumber (low-frequency) and zero-
frequency parts of the local Ñuctuation spectrum may be
expected to play a particularly important role in the type of
heating model we discuss here. These are essentially the
RMHD Ñuctuations.

We emphasize that our aim is to investigate one source of
heating and not to rule out or deny the existence of other
heating mechanisms. Indeed, we regard it as very likely that
compressive wave activity is present and contributes to the
heating at some level. Here, though, we assume that the
perpendicular cascade produces the dominant form of dissi-
pation, neglecting magnetoacoustic heating (including via
shocks), parallel cyclotron damping, gravity waves, and
other processes (e.g., Ofman & DeForest 2000 ; Ofman,
Nakariakov, & Sehgal 2000 ; Ghosh et al. 1998a, 1998b ;
Gazol, Passot, & Sulem 1999 ; Khabibrakhmanov &
Mullan 1994, 1997 ; Hollweg 1997).

3. REDUCED MAGNETOHYDRODYNAMIC FORMULATION

Reduced MHD, though not a replacement for a full
MHD model, seems to be particularly appropriate in a low

corona having low Ñuctuation levels : withb
p

dB/B0 > 1, b
pbeing the plasma beta factor Schnack, & Van(Mikic� ,

Hoven 1989 ; Longcope & Sudan 1994 ; Einaudi et al. 1996 ;
Hendrix & van Hoven 1996 ; Dmitruk & 1999).Go� mez
RMHD cascade (e.g., Montgomery 1982) is fueled by coup-
lings that drive excitations principally to a high perpendicu-
lar wavenumber. That is, nonlinear RMHD spectral
transfer produces structures having small spatial scale
transverse to the mean (vertical) magnetic Ðeld In a fullB0.(not reduced) MHD model, a strong perpendicular cascade
of this type is expected when is small. This has beendB/B0shown in various simulation and analytical studies wherein
the turbulence dynamically reorganizes to favor RMHD-
type Ñuctuations (Montgomery & Turner 1981 ; Montgo-
mery 1982 ; Shebalin et al. 1983 ; Carbone & Veltri 1990 ;
Oughton et al. 1994, 1998 ; Matthaeus et al. 1996, 1998 ;
Kinney & McWilliams 1998). It is also favored for low inb

pthe nearly incompressible limit of fully compressible MHD
(e.g., Zank & Matthaeus 1992 ; Bhattacharjee, Ng, & Span-
gler 1998). Thus, RMHD appears to capture the essential
physics of the low-frequency waves and turbulence we wish
to investigate. It also a†ords considerable advantages in
numerical simplicity and efficiency.

The use of an RMHD description in models of the corona
can be justiÐed as follows. The RMHD formalism can be
derived from compressible MHD under the assumptions of

(1) low turbulent Mach number (2) low and (3) theM
s
, b

p
,

restriction to low-frequency Ñuid-like behavior (Zank &
Matthaeus 1992). Regarding (1) and (2), observational esti-
mates in the lower corona (e.g., Hu, Esser, & Habbal 1997 ;
Warren et al. 1997 ; Doyle et al. 1997) suggest that
u B 25È35 km s~1, km s~1, and km s~1c

s
B 115 VA D 1000

(or higher), yielding andM
s
\ u/c

s
B 0.2È0.3 b

p
P c

s
2/V A2 B

0.01. Thus, is small and small to moderate, so thatb
p

M
sour use of RMHD in the coronal context is consistent with

the assumptions behind its derivation.
Note that this does not mean that acoustic activity

cannot be present or is not important. It does imply that the
RMHD limit should describe the leading-order nonlin-
earities, provided that all the activity is not acoustic to
begin with. In keeping with many other coronal heating
models (e.g., Axford & McKenzie 1997), we assume that the
Ñuctuations launched from the network toward the corona
are primarily in character (i.e., incompressive).Alfve� nic
Consequently, the Ñuctuations supplied to the coronal base
are expected to have a signiÐcant incompressible com-
ponent. Discussion regarding compressive e†ects can be
found elsewhere (e.g., Ofman & DeForest 2000 ; Ofman et
al. 2000).

To describe low-frequency RMHD couplings, it is useful
to refer to a Fourier representation. A Fourier mode, e.g., a
velocity Ðeld mode v(k), is said to be quasiÈtwo-dimensional
if both and While here we arek Æ B0B 0 ¿(k) Æ B0B 0.
interested in the nonlinear dynamics of such modes, it is
worth emphasizing that even in the linear limit, incompress-
ible quasiÈtwo-dimensional modes are not, in general,
waves in the usual sense. This is because Ñuctuations that
are purely two-dimensional are strictly non-(k Æ B0\ 0)
propagating, having zero frequency (using the waveAlfve� n
dispersion relation). Fluctuations with nonzero but still
very low frequency are signiÐcantly inÑuenced by nonlinear
couplings and are not expected to be accurately described
as ““ waves.ÏÏ

The equations of RMHD are essentially those of incom-
pressible two-dimensional MHD with allowance made for
long-wavelength wavelike couplings between theAlfve� n
two-dimensional planes (Strauss 1976 ; Montgomery 1982 ;
Zank & Matthaeus 1992). The retained dynamics satisÐes

where is the characteristic nonlin-qnl[ qA, qnl\ 1/ o kb(k) o
ear timescale of a mode of wavenumber k \ o k o , and qA \

is its period. In standard non-1/ o k Æ B0 o Alfve� n
dimensionalized units (with expressed in units of a char-B0acteristic speed the RMHD equations for theAlfve� n VA),
evolution of the vorticity u and the magnetic potential a are

A L
Lt

] ¿ Æ $
B
u\ b Æ $j ] l+

M
2 u] B0

Lj
Lz

, (1)

A L
Lt

] ¿ Æ $
B
a \ g+

M
2 a ] B0

Lt
Lz

. (2)

The equations are closed by noting that u\$ Æ ¿\ 0,
and with analogous expres-[+

M
2 t, ¿\ (Lt/Ly,[ Lt/Lx,0),

sions for the magnetic quantities, e.g., With thej \[+
M
2 a.

exception of the mean magnetic Ðeld, all quan-B0\B0 zü ,
tities are functions of r \ (x, y, z) and time, although the z
dependence is ““ slow ÏÏ (Montgomery 1982 ; Zank & Mat-
thaeus 1992). The dissipation coefficients are equal to the
inverse kinetic and magnetic Reynolds numbers : Re\ 1/l
and Note that the Ðnal term in each equationR

m
\ 1/g.
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produces the long wavelength coupling of the two-
dimensional planes.

The above standard RMHD equations require augmen-
tation if they are to be applied within the context of the
present model. We therefore introduce terms representing
(in a volume-averaged sense) the forcing, reÑection, and
transmission of the waves that were included in our earlier
phenomenological model (Matthaeus et al. 1999). Mean-
square Ñuctuation amplitude is injected into a speciÐed
upward mode at rate F (corresponding to injection of
kinetic plus magnetic energy at rate F/4). The outward pro-
pagating wave energy Ñux is reÑected into inward propagat-
ing modes at rate R~, with R` being the corresponding rate
for reÑection of inward waves into outward. All outward
modes experience a reduction in their energy at the rate T ,
which simulates transmission of these waves out of the
system. Denoting the energy (per unit mass) in outward
waves by and that in inward modes byE~ \S(¿ [ b)2T

we add additional terms to equationsE`\ S(¿ ] b)2T,
(1)È(2) so that the following energy equations are satisÐed :

dE~
dt

\ F[ [R~] T ]E~] R`E` , (3)

dE`

dt
\ R~E~ [R`E` . (4)

The total energy per unit mass is E\ (E`] E~)/4. The
left-hand sides of these equations represent the dynamics
embodied in equations (1)È(2). Note that the reÑection and
transmission terms in equations (3)È(4) correspond to addi-
tional reÑection operators in equations (1)È(2).

It can be shown that the reÑection rates RB are of order
where * is a typical length scale for radial changes inVA/*,

the velocity (Hollweg 1981, 1996 ; Velli 1993 ;Alfve� n VAZhou & Matthaeus 1990a), while the transmission rate is
with L the box length in the parallel directionT DVA/L ,

(Matthaeus et al. 1999). As noted above, RMHD dynamics
requires or, equivalently, whereqnl[ qA JE/j

M
Z VA/L , j

Mis a characteristic length scale for the quasiÈtwo-
dimensional component. Thus, for units where as isqnl\ 1,
convenient in simulations and phenomenologies, one
should require that T ¹ 1. Strong reÑection then corre-
sponds to R[ 1, with weak reÑection occurring when
R\ 1.

4. RESULTS

The RMHD code can generate several types of runs of
relevance to the physics of our proposed heating model.
Some runs illustrate the basic properties of the code and are
important for developing conÐdence in our approach.

The equations are solved using an (undealiased) pseudo-
spectral code with second-order Runge-Kutta time step-
ping. Fourier expansions are used in all three directions
with periodic boundary conditions applied. In the runs dis-
cussed herein, we always set l\ g. With forcing, reÑection,
and dissipation ““ turned o†,ÏÏ the code is initialized with
broadband random velocity and magnetic Ðelds character-
ized by power-law spectra. An undriven, ideal simulation of
this type carried out for several tens of nonlinear times qnlindicates, as expected for a pseudospectral method, that the
code accurately conserves both energy E and cross helicity

Typically, conservation of E is accurate toH
c
\ S¿ Æ bT.

better than one part in 104 for t \ 10qnl.

Another series of test runs includes no background
turbulence. Instead, the code starts with an empty
spectrum. Wave forcing is set to provide unit energy per
unit time in a single upward-propagating mode, k \ (1, 1, 1)
in simulation units. With no dissipation and no reÑection,
the energy of the driven mode increases linearly in time.
With transmission set to a Ðxed value T , but no reÑection
(R\ 0), the driven mode saturates at the level InE~\ F/T .
another test, the action of the numerical reÑection algo-
rithm is investigated by setting T \ 0,R

`
\ R~\ R,

F\ 1, and comparing the numerics with the analytic solu-
tion, which approaches equipartition. Finally, one can set
nonzero values of F, R, and T and compare the numerical
and analytic solutions.

The code agrees to near round-o† levels with these test
solutions. Notably, there is identically zero spectral transfer
for all tests with zero background turbulence level. This is a
consequence of two selection rules for generating turbu-
lence : There are no nonlinear couplings (1) among unidirec-
tionally propagating waves and/or (2) when the Ñuctuations
reside at a single wavevector k. These rules are one reason
we have generally employed wave forcing, which is mono-
chromatic and involves only upward-propagating modes,
since one then has quantitative control over nonlinear
couplings and the onset of spectral transfer. Note that we
do not regard driving with a broadband upward Ñux as
unrealistic. However, in that case, the driven waves would
interact among themselves to drive turbulence. This would
produce even stronger conclusions regarding the efficiency
of the turbulent cascade. In employing monochromatic
driving, we have adopted a more conservative approach
and one that allows us to probe in greater detail the condi-
tions for exciting and maintaining a strong nonlinear
cascade and signiÐcant heating rates caused by turbulence.

4.1. Steady Turbulence and Dissipation
Our main results are for dissipative RMHD driven by a

single monochromatic upward-propagating mode. Trans-
mission and reÑection are set to nonzero values. For the
runs discussed in this subsection, the resolution is 2562] 4
with The initial seed turbulence has unitRe\R

m
\ 800.

energy and near-zero cross helicity, with a broadband spec-
trum where all modes with are excited.k

z
2 ¹ k

M
¹ 6

Using this approach, we performed two long simulations
out to a Ðnal time of t \ 500, where the unit of time is an

crossing time for the box. (Each of these runsAlfve� n
required more than 35 days of CPU time on a 600 MHz
Alpha processor.) Both runs were at F\ 1, T \ 0.3, but
di†ered in the value of R used, either or 1. Initially, the12driving pumps up the (1, 1, 1) mode as the background
turbulence experiences a period of rapid initial decay and
then a strong growth.

After t B 20, the system begins to approach a steady
state, with the turbulent decay approximately balanced by
new energy supplied by the driven wave and by its reÑec-
tion, the downward propagating mode with the same k.
Figure 2 illustrates this scenario for the run. ShownR\ 12are time histories of total energy E, the normalized cross
helicity and the mean-squarep

c
\ (E`[ E~)/(E`] E~),

current density S j2T. The Ðnal panel of the Ðgure compares
the time-dependent turbulent dissipation rate with(vturb)the rate of energy loss caused by transmissions. It is evident
that the latter two quantities sum on average to the sup-
plied energy Ñux F\ 1. However, at any particular time the
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FIG. 2.ÈTime histories of (a) total turbulence energy and the two-dimensional contributions to turbulence energy (Eb \ solid), (b) normalized cross
helicity (c) mean-square current density S j2T, with its two-dimensional component shown as the lower trace, and (d) energy lossp

c
\ (E`[ E~)/(E`] E~),

rates via dissipation, transmission (dashed line), and their sum. Results out to t \ 500 look very similar to the steady phase shown here. N.B. : Figs. 2È6 all
employ data from the ““ primary ÏÏ 2562] 4 run.R\ 12,

turbulence energy may vary from its average and the rates
of loss and supply are not expected to precisely balance. A
notable and central feature of Figure 2 is that the dissi-
pation rate caused by turbulence corresponds to a signiÐ-
cant fraction of the energy supply rate. An estimate of the
average efficiency of turbulent dissipation is given by

which is about 25% in this case. In a more realis-SvturbT/F,
tic coronal model, this would signify that one-fourth of the
input wave energy Ñux ends up heating the plasma lying
within the simulation domain. Results from the companion
high-resolution run (with R\ 1), as well as various runs
carried out at lower resolutions (usually 642] 4), conÐrm
this general behavior for a variety of parameters. We now
turn to a more detailed look at the properties of the steady
driven turbulence.

4.2. Properties of the Turbulence
Wavenumber spectra characterize the distribution of

Ñuctuation energy over scale. Below, we consider the
reduced and two-dimensional spectra at a particular time in
the steady turbulence phase of the simulation. Spectra at
other times during this phase are similar. (All diagnostics in
this subsection employ data from the driven high-R\ 12resolution run.)

Figure 3 shows two energy spectra of the kinetic and
magnetic Ñuctuations at t \ 100. The Ðrst of these is the

reduced magnetic spectrum, which isEr(k
M
) \ £

kz
E(k

M
, k

z
),

a function of a perpendicular wavenumber. For compari-
son, we also show the spectrum associated with the strictly
two-dimensional Ñuctuations : E2D(k

M
) \E(k

M
, k

z
\ 0).

Two features are evident. First, although the energy has
been supplied at long wavelength the Ñuctuation(k

M
\ J2),

spectrum is broadband and nearly monotonic decreasing.
There is a suggestion of an inertial range of modest band-
width since the slope passes through a region of approx-
imately k~5@3 behavior. Note that there is no strong spectral
feature corresponding to the forcing wavenumber. This
indicates that spectral transfer is efficiently coupling the
input wavenumber to the full set of wavenumbers partici-
pating in the cascade. A second noteworthy feature is that
the two-dimensional spectrum is maintained at a signiÐcant
level. It includes no directly forced modes and is driven only
indirectly through spectral transfer. These Ñuctuations are
strictly nonpropagating and their self-interactions are inde-
pendent of and its associated propagation e†ects. Two-B0dimensional Ñuctuations typify the strongly interacting
modes to which the driven wave is coupled.

In unforced RMHD, the reduced and two-dimensional
spectra are expected to be very similar (after normalizing
appropriately) since RMHD modes are, by deÐnition, those
for which wave e†ects are not dominant. Conse-Alfve� n
quently, as depends on the perpendicular spectra atqA k

z
,
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FIG. 3.ÈPerpendicular spectra of the Ñuctuation energy from the
primary run at t \ 100. Top panel is the reduced (summed over spec-k

z
)

trum of the Ñuctuation energy. Kinetic (dashed line) and magnetic (solid
line) energy spectra are shown separately. A k~5@3 reference line (dotted
line) is also shown. Lower panel shows perpendicular spectra for the two-
dimensional components of the magnetic (solid line) and kinetic(k

z
\ 0)

(dashed line) energy. Note that magnetic energy exceeds kinetic energy at
almost every scale.

each should be similar. This is seen to be the case ink
zfree-decay runs. Our driven situation di†ers from this since

the driven mode involves a particular (\1). The associ-k
zated thus contains signiÐcantly more energy thanE(k

M
, k

z
)

the spectra at other k
z
.

The Ñuctuations are broadly distributed in (x-space)
values as well as in wavenumber, as is typical in fully devel-
oped turbulence. In Figure 4, we show the observed dis-
tributions (probability distribution functions, or PDFs) of
the electric current density, vorticity, and the x-components
of the magnetic and velocity Ðelds, for the same runb

x
, v

x
,

as above. Clearly, the PDFs for and are very similarb
x

v
xand close to Gaussian. Indeed, the kurtosis of isb

x
ibx\to be compared with the Gaussian valueSb

x
4T/Sb

x
2T2 G 3.1,

of 3. The kurtosis of is also 3.1. On the other hand, thev
xPDFs for the vorticity and the current density have highly

non-Gaussian tails, suggesting that they are strongly inter-
mittent quantities Moreover, as the(iu G 5.9, i

j
G 10.1).

PDF for j is signiÐcantly less Gaussian than that for u, this
implies a more intermittent or bursty behavior for the
current density, perhaps a consequence of the dynamics of
the MHD dissipative structures. Temporal plots of total

viscous and resistive dissipation show analogous results.
However, the extent to which this result is general, or an
artifact of the moderately high Reynolds numbers allowed
by the resolution of our simulations, remains to be estab-
lished.

The disparity between degrees of intermittency at large
and small scales (i.e., b vs. u, j) is entirely expected on the¿,
basis of both hydrodynamic and MHD treatments (Nelkin
1994 ; Frisch 1995 ; Muller & Biskamp 2000). SpeciÐcally,
small-scale intermittent behavior is associated with forma-
tion of characteristic small-scale coherent structures in
MHD. For the two-dimensional case, these are small-scale
sheets and/or Ðlaments of electric current density along
with Ðne-scale quadrupolar distributions of vorticity
(Frisch et al. 1983 ; Matthaeus & Lamkin 1986 ; Biskamp &
Welter 1989 ; Hendrix & van Hoven 1996 ; Muller &
Biskamp 2000) and are associated with the formation and
dynamics of small-scale reconnection regions. These are
essential features of the dissipative process in two-
dimensional MHD.

We illustrate the spatial structure of the Ñuctuations
using plots of the velocity and magnetic Ðeld vectors over-
laid on intensity diagrams for the vorticity and electric
current density (Fig. 5). It is evident that the magnetic Ðeld
and velocity structures are dominated by large-scale fea-
tures that approach the box dimension in size, although
there is a clear distribution across scales, consistent with
Figure 3. On the other hand, the electric current and vor-
ticity take on large values only in very small regions of
space. Figure 5 shows that these small regions are of the
type connected with magnetic reconnection between adja-
cent magnetic islands. This conÐrms that the characteristic
small-scale features in driven RMHD are essentially the
same as in two-dimensional MHD (e.g., Milano et al. 1999).
Small-scale reconnection-related electric current channels
and vorticity structures are responsible for intermittency
and most of the dissipation in the RMHD scenario. To the
extent that this picture is viable for coronal heating, these
small-scale characteristic features should be relevant in that
context as well. Similar conclusions have been drawn for
closed Ðeld-line regions driven quasi-statically by photo-
spheric footpoint motions (Hendrix & van Hoven 1996 ;
Dmitruk et al. 1998).

Another contrast between the small- and large-scale fea-
tures of the turbulence can be seen in correlations that are
revealed by scatter plots. In Figure 6 we show two such
scatter plots, obtained from the sampled time series of
global quantities computed from our main driven run. The
upper panel plots (global) kinetic energy Ev(t) at time t
versus the magnetic energy Eb(t) at the same time. The lower
panel plots global mean-square vorticity Su2T versus
mean-square current S j2T. Evidently there is a strong anti-
correlation between kinetic and magnetic energies. This is
consistent with interference between counterpropagating
wave packets at low wavenumber. The slope of this anti-
correlation is quite accurately [1, as demonstrated in the
Ðgure. A similar e†ect has been discussed by Pouquet,
Frisch, & Meneguzzi (1986) for full three-dimensional
MHD. On the other hand, the positive correlation between
S j2T and Su2T clearly cannot be associated with wave pro-
pagation. However, it is well known (Matthaeus & Lamkin
1986) that small-scale reconnection involves localized pro-
duction of both mean-square current and vorticity in con-
nection with intense periods of small-scale activity near
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FIG. 4.ÈHistograms of the distribution of electric current density, vorticity, and x-components of the magnetic and velocity Ðelds using data accumulated
from snapshots at t \ 50, 100, 150, . . ., 500 in the primary run. Dashed curves are Gaussian best Ðts.

reconnection sites. We interpret the positive correlation in
the bottom panel of Figure 6 as indicative of this. Thus, the
strongly nonlinear dynamical features that were discussed
in connection with Figures 4 and 5 provide a consistent
explanation for the phenomenon seen in Figure 6.

4.3. Cross Helicity and ReÑection
Driving occurs in our model by adding energy to a nega-

tive cross helicity Fourier mode. In the absence of reÑection
or nonlinearity, this would correspond to driving a large-
amplitude, upward-propagating wave. However,Alfve� n
because seed-level turbulence and reÑection are both
present, the driven Ñuctuations experience strong nonlinear
couplings. These require that both positive and negative
cross helicity excitations participateÈotherwise nonlin-
earity vanishes for RMHD. If a steady level of turbulent
cascade is achieved, and we have seen that this is usually the
case, there must be a steady admixture of both negative
cross helicity (outward-type) and positive cross helicity
(inward-type) Ñuctuations. It is useful to document how
this mixture of cross helicities varies with reÑection rate R.

This is examined by computing the steady normalized
cross helicity, averaged overp

c
\ (E`[ E~)/(E`] E~),

all t º 50, for Ðxed run parameters other than the reÑection
rate R.

Figure 7 shows these averages for a range of R and for a
collection of two series of runs having either a 2562] 4
resolution with Reynolds numbers of 800, or a 642] 4
resolution with Reynolds numbers of 200. Recall also that
T \ 1, so that the physically important ratio R/T 4 R. One
can see that for rather weak reÑection the steady cross heli-
city is a rapidly increasing function of R. This sensitivity
persists up to RD 1, at which point implying thatp

c
D 0,

inward and outward energy densities are comparable :
E`B E~. In fact, for reÑection strengths as small as
RD 0.1, the inward energy E` is about 25% of the total
Ñuctuation energy. Evidently it is a feature of the present
model that substantial turbulent heating usually corre-
sponds to a substantial steady state Ñux of inward-type
Ñuctuations. The counterpropagating Ñuctuations are
strongly interacting, as is evidenced by the substantial
heating rates observed (see ° 4.4).
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FIG. 5a FIG. 5b

FIG. 5.ÈSome Ðelds from a perpendicular cross section of the primary run at t \ 100. (a) Intensity plot of electric current density. Overlaid arrows are the
transverse magnetic Ðeld Ñuctuations. (b) Intensity plot of vorticity u. Overlaid arrows are the velocity Ðeld Ñuctuations in the transverse plane.

Also shown on the Ðgure is the situation when R\ 0. In
this case, the asymptotic steady is [1, corresponding top

cpure outward propagation and no turbulence. This special
case is discussed further below.

4.4. Heating and ReÑection
It is also of interest to investigate the variation of the

steady state heating rate with reÑection strength. We use the
same set of runs represented by the data in Figure 7È
recalling that the runs have Reynolds numbers of either 200
or 800. Figure 8 displays the time-averaged energy loss rates
associated with transmission of energy out of the domain
(T E~) and with turbulent dissipation as a function of(vturb)reÑection rate. Steady dissipation rates exceeding 0.2 are
attained for all reÑection rates higher than about R\ 0.1.
The sum of the transmitted energy loss rate and the dissi-
pation rate is approximately unity, a consequence of setting
the energy supply rate F\ 1 for all the driven runs. Thus
the ““ efficiency,ÏÏ deÐned as which is the fraction ofvturb/F,
energy channeled through turbulent heating, is also
observed to be 20% or more whenever R[ 0.1. The point
R\ 0 is singular, and the efficiency is a steep function of R
as R] 0, consistent with the discussions presented in con-
nection with Figures 7 and 9. One should also note that
Figure 8 is qualitatively completely consistent with the
heating rates and efficiencies found by Matthaeus et al.
(1999), wherein heating rates were based on a phenomeno-
logical turbulence model rather than the explicit treatment
employed here (the quantitative agreement is also rather
good).

4.5. Initial Turbulence L evel
As already noted, when R\ 0 the turbulent dissipation

and heating tend to zero. The approach to this Ðnal state is
illustrated in Figure 9, which shows the time history of the
dissipation experienced by all modes other than the driven

mode (curve labeled R\ 0), that is, the total dissipation
through both magnetic and kinetic channels, corrected by
subtracting the dissipation experienced by the single forced
Fourier mode (the direct dissipation of the forced modeÏs
energy is clearly distinct from the dissipation associated
with a turbulent cascade). This is a 642] 4 simulation with
an initial seed turbulence energy level of E\ 1. There is a
burst of turbulent dissipation very early on, followed by an
approximately power-law decay that persists until t B 40.
After that, the turbulent dissipation decays exponentially.
Thus we conclude that when R\ 0, the time-asymptotic
turbulent dissipation rate is also zero.

All runs discussed so far have had unit Ñuctuation energy,
E\ 1, and zero cross helicity, at t \ 0. ThisE` \E~\ 12,
more or less arbitrary level of initial turbulence has been
used to trigger subsequent nonlinear activity driven by the
(externally supplied) wave energy. A natural question to
investigate at this point is whether the level of turbulent
dissipation attained in the Ðnal steady state is sensitive to
the initial turbulence level. To examine this, we carried out
a set of 642] 4 simulations with varying initial energy
levels. The energy is distributed across the same
(broadband) set of wavevectors in each case with the cross
helicity near zero. Other parameters, including the reÑec-
tion rate and the Reynolds numbersR\ 12 Re\ R

m
\ 200,

were identical from run to run. Figure 9 illustrates the
results of three runs from this series. Shown are the turbu-
lent dissipation rates (total dissipation minus dissipation in
the forced mode) versus time for runs with initial turbulence
levels of and 10~5. One can see that for theE0\ 1, 110,lower values of the dissipation rate increases over aE0,timescale of and subsequently attains essentiallyB 20qnlthe same rate of dissipation in each case.

Evidently the steady state level of turbulent dissipation is
robust and not sensitive to the initial (seed) turbulence level.
As mentioned earlier, a zero level of initial turbulence leads
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FIG. 6.ÈScatter plots of (top) kinetic energy vs. magnetic energy, and
(bottom) mean-square vorticity vs. mean-square current density. Data
points are from the primary run with 10 ¹ t ¹ 250. The latter shows a
strong correlation at all but the lowest values, indicative of small-scale
nonwavelike activity that we attribute to small-scale current and vorticity
structures associated with magnetic reconnection. The former portrays a
strong anticorrelation throughout, consistent with the presence of
(counterpropagating) waves at low wavenumber. Lines with slope [1 (top)
and ]1/2 (bottom) are shown for reference.

to a simple propagating wave solution even when reÑection
is present. In that case, there is no spectral transfer, no
cascade, and no turbulent dissipation. However, even an
extremely small amount of initial turbulence is sufficient to

FIG. 7.ÈSteady values of the normalized cross helicity, for a seriesp
c
,

of 642] 4 (triangles) and 2562] 4 (squares) runs plotted vs. the reÑection
rate R.

FIG. 8.ÈSteady energy loss rates caused by dissipation and transmis-
sion averaged over all t º 50 as a function of R. Results from a family of
runs at resolution 642] 4 with large-scale Reynolds number of Re\ 200
are shown connected by lines. Results from the two 2562] 4 runs
(Re\ 800) are shown as unconnected squares and triangles.

trigger nonlinear couplings that regenerate the turbulence
to a robustly recurring level. This property, which suggests
that the E(t \ 0)] 0 case is a singular limit, indicates that
the highly turbulent state is strongly favored in the present
model.

5. DISCUSSION

There are at least four important characteristics of the
heating mechanism presented here that heating models
based on direct wave damping can lack. First, since the
heating occurs via indirect damping of the driving Alfve� n
waves (which propagate either upward or downward), the
restrictive constraints associated with ““ box-crossing ÏÏ time-
scales play no important role. All that is required is that

FIG. 9.ÈTime history of total dissipation (Ohmic plus viscous) for
several 642] 4 runs. Contribution of the self-dissipation of the driven
mode is subtracted out in each case. The trace labeled R\ 0 is for a run
with initial energy and no reÑection. The energy decays smoothlyE0\ 1
and no steady turbulent dissipation is attained. The top curve is for an
identical run, aside from the value of the reÑection parameter, R\ 12.Dissipation reaches a steady state after about t \ 20 nonlinear times. The
two other curves are for and identical other initial parametersR\ 12except the initial turbulence level, which is set to either orE0\ 110 E0\
10~5. For Ðxed R, essentially the same steady state dissipative level is
attained independent of E0.
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enough energy be bled out of the propagating wave popu-
lation to sustain the quasiÈtwo-dimensional turbulence. As
waves are constantly being generatedÈat the coronal base
and by reÑectionÈthe reservoir of energy driving the turbu-
lence is maintained.

In this context, recall that the dissipation rate associated
with a (statistically steady) turbulent cascade of energy is set
by the energy injection rate (a Ðxed constant in our
simulations). The energy cascade acts as a ““ pipeline ÏÏ
between the large energy-injection scales and the small dis-
sipative scales. For roughly steady driving of the turbulence,
the timescale for transit of the pipeline is the large-scale
eddy-turnover time where E is the energy inqnl\ j

M
/JE,

the turbulence and is a characteristic length scale for, inj
Mthis case, the quasiÈtwo-dimensional turbulence. This result

is independent of the Reynolds numbers (e.g., Lesieur 1990 ;
Frisch 1995) and also of the periods of the driving waves,
except insofar as the nonlinear interaction time for the
counterpropagating waves is period dependent.

Another characteristic of a reÑection-driven model is that
the plasma heating occurs essentially ““ in place,ÏÏ that is, at
much the same height at which the wave energy is injected
into the quasiÈtwo-dimensional component. Two factors
contribute here : (1) the speed of the nascent solar wind is
inferred to be low in the region where the heating process is
most relevant (Grall et al. 1996 ; Guhathakurta et al. 1999 ;
Sittler & Guhathakurta 1999), ensuring that advection does
not move the energy very far outward spatially as it under-
goes spectral transfer to small perpendicular scales ; and (2)
although the quasiÈtwo-dimensional Ñuctuations have long
parallel (B vertical) length scales, the energy transfer to
them is initiated at the heights where the upward and down-
ward modes spatially overlap. While this region is relatively
extended, given that factor (1) holds, the cascade and
heating will still take place in approximately the same
height range.

A third important feature is that the dynamics of quasiÈ
two-dimensional turbulence is essentially insensitive to the
mean Ðeld strength, (e.g., Oughton et al. 1994 ; HossainB0et al. 1995 ; Matthaeus et al. 1996 ; Kinney & McWilliams
1998 ; Matthaeus et al. 1998 ; Oughton et al. 1998). In partic-
ular, the associated nonlinear timescale is approximately
independent of provided that This conditionB0, E/B02[ 1.
is expected to hold in the corona. Thus, once the energy has
been injected into the turbulence, the heating process
depends only weakly on The injection process itselfÈB0.which involves competition between reÑection, transmis-
sion, and nonlinear interactionsÈclearly depends on
gradients of but may not depend strongly on the ÐeldB0strength. We note that various observed quantities also
show (approximate) solar cycle independence, e.g., coronal
(hole) temperature, solar-wind mass Ñux, and maximum fast
solar wind speed.

Finally, because the non-WKB reÑection is more e†ective
for lower frequency waves (Moore et al. 1991 ; Musielak,
Fontenia, & Moore 1992 ; Velli 1993), the present model is
most efficient when driven by such modes. Observations
and informed estimates indicate that there is adequate
energy available to heat the corona in this portion of the
power spectrum; the problem has been Ðnding mechanisms
that can successfully extract it. On the other hand, evidence
for sufficient power at higher frequencies is currently scant
(McKenzie et al. 1995 ; Axford & McKenzie 1997 ; Tu &
Marsch 1997 ; Spangler & Mancuso 2000).

Although the spectrum of coronal Ñuctuations is
unknown, there is growing evidence that their energy
content is substantial. Chae, & Lemaire (1998)Schu� hle,
have o†ered evidence for turbulent Ñuctuations with ampli-
tudes D30 km s~1 in the lower corona. There has also been
the suggestion (Hassler et al. 1990) that the observed
increase with altitude of the associated nonthermal line
broadening, and subsequent saturation at about 1.1 to 1.2

may signify reÑection and/or damping of the turbulentR
_

,
Ñuctuations. Observations at somewhat higher altitudes
(D1.5È3 from both SPART AN (Kohl et al. 1995) andR

_
)

the Ultraviolet Coronagraph and Spectrometer on the
Solar and Heliospheric Observatory (Kohl et al. 1997)
support the interpretation that protons are heated to
several million degrees K. This would appear to be consis-
tent with a turbulent heating mechanism that commences at
slightly lower altitudes. However, there is also an inherent
ambiguity in some of these observations since contributions
to line broadening from Ñuctuations and from thermal
motions are difficult to disentangle (Cranmer, Field, &
Kohl 1999), even in the case of inferred anisotropy (Kohl et
al. 1998).

The distinction between propagating Ñuctuations and
turbulence has also gained some attention in recent obser-
vations. Upward wave Ñuxes are detected in the chromo-
sphere (Ulrich 1996) while detection of wave Ñuxes in the
transition region (Doyle et al. 1998) is less deÐnitive at
present. As for the corona, Chae et al. (1998) argue that
upward waves are not present, and they prefer to interpret
their results in terms of small-scale MHD turbulence. It is
not clear to us if these observations are conclusive or if they
might be consistent with a mixture of positive and negative
cross helicity Ñuctuations that are strongly coupled, such as
those we have described in our simulation model. A random
mixture of upward- and downward-moving Ñuctuations
could, presumably, cause some phase correlation tests to
produce a result that could be interpreted as non-
propagation. In the context of our model, this would be
consistent with the presence of strong turbulence, but from
our perspective, we would not rule out the presence of low-
frequency propagating waves that may drive the system.
However, in steady state, our model would suggest that
substantial reÑection results in near equal admixtures of
inward- and outward-type signals. Indeed, this character-
istic would appear to be one that distinguishes the high-
frequency wave-driven models (Axford & McKenzie 1997)
from the present low-frequency model. The former have no
mechanism or requirement involving an inward propagat-
ing component. On the other hand, our model appears to
require a steady inward admixture of Ñuctuations, thus pro-
viding an observational basis for distinguishing the models.

It is interesting to note that the heating mechanism dis-
cussed herein may also be relevant in magnetically closed
regions such as coronal loops. The essential elements of the
mechanism are the presence of both (low-frequency)
counterpropagating waves and (seed-level) turbu-Alfve� n
lence in the planes perpendicular to the large-scale magnetic
Ðeld. Many closed Ðeld-line heating models also rely on the
interaction of countertraveling disturbances (generated, for
example, by photospheric footpoint motions at each end of
a coronal loop). As in the present model, these waves could
then couple to quasi-perpendicular Ñuctuations with a sub-
sequent cascade of the energy to small scales and eventual
conversion into heat (e.g., & 1992 ;Go� mez Ferro-Fonta� n
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Heyvaerts & Priest 1992 ; Velli 1996 ; Hendrix & van Hoven
1996 ; Einaudi et al. 1996 ; Dmitruk et al. 1998 ; Priest et al.
1998). There is then the suggestion that the same heating
mechanism is active in both types of Ðeld-line regions, with
the major di†erence being the way in which the counter-
propagating Ñuctuations are generated, i.e., reÑec-Alfve� nic
tion versus boundary motions.

In conclusion, the present results, based on direct numeri-
cal simulation, support our earlier suggestion that turbu-
lence driven by low-frequency waves and reÑection may
provide a viable heating mechanism for the open Ðeld-line

corona. In addition to further examination of observational
constraints, we plan to develop this model further by
incorporating more realistic models of the coronal Ðeld,
self-consistent reÑection, and more realistic open boundary
conditions.
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