Numerical studies of the effect of a dc magnetic field on dynamo action
(development of magnetic fields with large spatial scales), due to
helically-driven magnetohydrodynamic turbulence, are reported. The apparent
effect of the dc magnetic field is to suppress the dynamo action, above a
relatively low threshold. However, the possibility that the suppression results
from an improper combination of rectangular triply spatially-periodic boundary
conditions and a uniform dc magnetic field is addressed: heretofore a common
and convenient computational convention in turbulence investigations. Physical
reasons for the observed suppression are suggested. Other geometries and
boundary conditions are offered for which the dynamo action is expected not to
be suppressed by the presence of a dc magnetic field component.Comment: To appear in Physics of Plasma