33 research outputs found

    Preparation of selective and segmentally labeled single-stranded DNA for NMR by self-primed PCR and asymmetrical endonuclease double digestion

    Get PDF
    We demonstrate a new, efficient and easy-to-use method for enzymatic synthesis of (stereo-)specific and segmental 13C/15N/2H isotope-labeled single-stranded DNA in amounts sufficient for NMR, based on the highly efficient self-primed PCR. To achieve this, new approaches are introduced and combined. (i) Asymmetric endonuclease double digestion of tandem-repeated PCR product. (ii) T4 DNA ligase mediated ligation of two ssDNA segments. (iii) In vitro dNTP synthesis, consisting of in vitro rNTP synthesis followed by enzymatic stereo-selective reduction of the C2′ of the rNTP, and a one-pot add-up synthesis of dTTP from dUTP. The method is demonstrated on two ssDNAs: (i) a 36-nt three-way junction, selectively 13C9/15N3/2H(1′,2″,3′,4′,5′,5″)-dC labeled and (ii) a 39-nt triple-repeat three-way junction, selectively 13C9/15N3/2H(1′,2″,3′,4′,5′,5″)-dC and 13C9/15N2/2H(1′,2″,3′,4′,5′,5″)-dT labeled in segment C20-C39. Their NMR spectra show the spectral simplification, while the stereo-selective 2H-labeling in the deoxyribose of the dC-residues, straightforwardly provided assignment of their C1′–H2′ and C2′–H2′ resonances. The labeling protocols can be extended to larger ssDNA molecules and to more than two segments

    Comparative (Meta)genomic Analysis and Ecological Profiling of Human Gut-Specific Bacteriophage φB124-14

    Get PDF
    Bacteriophage associated with the human gut microbiome are likely to have an important impact on community structure and function, and provide a wealth of biotechnological opportunities. Despite this, knowledge of the ecology and composition of bacteriophage in the gut bacterial community remains poor, with few well characterized gut-associated phage genomes currently available. Here we describe the identification and in-depth (meta)genomic, proteomic, and ecological analysis of a human gut-specific bacteriophage (designated φB124-14). In doing so we illuminate a fraction of the biological dark matter extant in this ecosystem and its surrounding eco-genomic landscape, identifying a novel and uncharted bacteriophage gene-space in this community. φB124-14 infects only a subset of closely related gut-associated Bacteroides fragilis strains, and the circular genome encodes functions previously found to be rare in viral genomes and human gut viral metagenome sequences, including those which potentially confer advantages upon phage and/or host bacteria. Comparative genomic analyses revealed φB124-14 is most closely related to φB40-8, the only other publically available Bacteroides sp. phage genome, whilst comparative metagenomic analysis of both phage failed to identify any homologous sequences in 136 non-human gut metagenomic datasets searched, supporting the human gut-specific nature of this phage. Moreover, a potential geographic variation in the carriage of these and related phage was revealed by analysis of their distribution and prevalence within 151 human gut microbiomes and viromes from Europe, America and Japan. Finally, ecological profiling of φB124-14 and φB40-8, using both gene-centric alignment-driven phylogenetic analyses, as well as alignment-free gene-independent approaches was undertaken. This not only verified the human gut-specific nature of both phage, but also indicated that these phage populate a distinct and unexplored ecological landscape within the human gut microbiome

    High-resolution NMR Structure of a Zn2+-containing Form of the Bacteriophage T5 L-alanyl-D-glutamate Peptidase

    No full text
    This paper represents the spatial solution structure of the Zn2+-containing form of the bacteriophage T5 L-alanyl-D-glutamate peptidase (EndoT5-Zn2+). The core of this α + β protein is formed by three α-helices (residues 7–15, 20–30, and 87–104) and a β-sheet containing three β-strands (residues 35–39, 71–76, and 133–135). The protein has two short loops (residues 16–19 and 31–34), a medium-length loop (residues 77–86) containing a short β-hairpin (residues 77–82), and two long loops (residues 40–70 and 105–132). The long loops include a stable 310-helix (residues 66–68) and labile α-helices 46–53 and 113–117. Catalytic Zn2+-binding site is represented by three amino acid residues, His66, Asp73, and His133. The cation-binding His residues are located near the foundations of the long loops, whereas Asp73 is positioned in the middle of the core β-sheet. The catalytic center localization contributes to the stabilization of the entire molecule, with Zn2+-binding playing a key role in the folding of this protein

    Chemical Synthesis of Peptidoglycan Mimetic–disaccharide-tetrapeptide Conjugate and Its Hydrolysis by Bacteriophage T5, RB43 and RB49 L-alanyl-D-glutamate Peptidases

    Get PDF
    Endolysins of a number of bacteriophages, including coliphages T5, RB43, and RB49, target the peptidoglycans of the bacterial cell wall. The backbone of these bacterial peptidoglycans consist of alternating N-acetylglucosamine and N-acetylmuramic acid residues that is further “reinforced” by the peptide subunits. Because of the mesh-like structure and insolubility of peptidoglycans, the processes of the peptidoglycan binding and hydrolysis by enzymes cannot be studied by spectral methods. To overcome these issues we synthesized and analyzed here one of the simplest water soluble peptidoglycan mimetics. A compound has been synthesized that mimics the peptidoglycan fragment of the bacterial cell wall, N-acetylglucosaminyl-β(1-4)-N-acetylmuramoyl-l-alanyl-γ-d-glutamyl-l-alanyl-d-alanine. NMR was used to study the degradation of this peptidoglycan mimetic by lytic l-alanoyl-d-glutamate peptidases of colibacteriophages T5, RB43, and RB49 (EndoT5, EndoRB43, and EndoRB49, respectively). The resulting glycopeptide mimetic was shown to interact with the studied enzymes. Its hydrolysis occurred through the bond between l-Ala and d-Glu. This artificial substrate mimetic was hydrolyzed by enzymes at different rates, which decreased outside the pH optimum. The EndoT5 demonstrated the lowest hydrolysis rate, whereas the EndoRB49-driven hydrolysis was the fastest one, and EndoRB43 displayed an intermediate potency. These observations are consistent with the hypothesis that EndoRB49 is characterized by the lowest selectivity, and hence the potentially broader spectrum of the peptidoglycan types subjected to hydrolysis, which was put forward in the previous study. We also show that to hydrolyze this glycopeptide mimetic, enzymes approach the glycopeptide near the methyl groups of all three alanines

    Evidence for the residual tertiary structure in the urea-unfolded form of bacteriophage T5 endolysin

    No full text
    Using high-resolution NMR spectroscopy, we studied peculiarities of the unfolding process of the bacteriophage T5 endolysin (EndoT5) by strong denaturants. It was shown that in the absence of zinc ions this protein is mostly unfolded in the solution of 8 M urea or 6 M guanidine hydrochloride. However, in the presence of zinc ions EndoT5 unfolding can be achieved only in acidic solutions (at pH \u3c 4.0), whereas at pH \u3e 4.0 NMR spectra of the metal-bound protein (Zn2+–Ca2+–EndoT5 or Zn2+–EndoT5 complexes) exhibit a few chemical shifts characteristic of the native or native-like proteins. Our data, including the pH–titration curve with the pK of ~5, suggested involvement of the zinc-binding histidines in the stabilization of this protein. Up-field signals that appear in the NMR spectra of apo-EndoT5 in the presence of high concentrations of strong denaturants are probably derived from the amino acid residues included in the formation of structured hydrophobic cluster, which likely corresponds to the 81–93 region of EndoT5 and contains some residual tertiary structure. It is possible also that this hydrophobic fragment serves as a foundation for the formation of structured cluster in the unfolded state

    Effect of C-terminal His-tag and Purification Routine on the Activity and Structure of the Metalloenzyme, L-alanyl-d-glutamate Peptidase of the Bacteriophage T5

    No full text
    In this work, we studied the effect of the C-terminally attached poly-histidine tag (His-tag), as well as the peculiarities of the protein purification procedure by the immobilized metal affinity chromatography (IMAC) on the activity and structure of the metalloenzyme, l-alanyl-d-glutamate peptidase of bacteriophage T5 (EndoT5), whose zinc binding site and catalytic aspartate are located near the C-terminus. By itself, His-tag did not have a significant effect on either activity or folding of the polypeptide chain, nor on the binding of zinc and calcium ions to the protein. However, the His-tagged EndoT5 samples had low shelf-life, with storage of these samples resulting in an increased propensity for protein self-association and decreased enzymatic activity of EndoT5. Furthermore, disastrous effects on the activity of the enzyme were exerted by the presence of imidazole and nickel ions accompanying metal chelate chromatography. The activity of the protein can be restored by thorough washing off of these low molecular impurities via the prolonged dialysis of the His-tagged EndoT5 samples at the specifically elaborated conditions

    On the Roles of Calcium and Zinc Ions in the Formation of a Catalytically Active Form of the Metalloenzyme, L-alanyl-d-glutamate Peptidase of the Bacteriophage T5 (EndoT5)

    No full text
    Structural consequences of the binding of metal ions (regulatory Ca2+ and catalytic Zn2+) to the metalloenzyme l-alanyl-d-glutamate peptidase of the bacteriophage T5 (Endo T5) and some of its analogues containing single amino acid substitutions in the active center were analyzed by nuclear magnetic resonance (NMR), circular dichroism (CD) and calorimetry. Analyses revealed that the native EndoT5 undergoes strong structural rearrangements as a result of Zn2+ binding. This structural rearrangement resulting in the formation of an active enzyme is completed by the Ca2+ binding. In this case, the NMR spectra uncover the tautomerism of the NH protons of histidine imidazoles responsible for the Zn2+ coordination. For the EndoT5 analogues with point substitutions in the Ca2+-binding site, similar conformational rearrangements are observed upon Zn2+ binding. However, no characteristic changes in the NMR spectra associated with the Ca2+ binding were detected. The roles of the proton exchange in the process of Ca2+-induced activation of the enzymatic activity of EndoT5 is discussed

    Evidence for the Residual Tertiary Structure in the Urea-unfolded Form of Bacteriophage T5 Endolysin

    No full text
    Using high-resolution NMR spectroscopy, we studied peculiarities of the unfolding process of the bacteriophage T5 endolysin (EndoT5) by strong denaturants. It was shown that in the absence of zinc ions this protein is mostly unfolded in the solution of 8 M urea or 6 M guanidine hydrochloride. However, in the presence of zinc ions EndoT5 unfolding can be achieved only in acidic solutions (at pH \u3c 4.0), whereas at pH \u3e 4.0 NMR spectra of the metal-bound protein (Zn2+–Ca2+–EndoT5 or Zn2+–EndoT5 complexes) exhibit a few chemical shifts characteristic of the native or native-like proteins. Our data, including the pH–titration curve with the pK of ~5, suggested involvement of the zinc-binding histidines in the stabilization of this protein. Up-field signals that appear in the NMR spectra of apo-EndoT5 in the presence of high concentrations of strong denaturants are probably derived from the amino acid residues included in the formation of structured hydrophobic cluster, which likely corresponds to the 81–93 region of EndoT5 and contains some residual tertiary structure. It is possible also that this hydrophobic fragment serves as a foundation for the formation of structured cluster in the unfolded state
    corecore