19 research outputs found

    WebQUAST: online evaluation of genome assemblies

    Get PDF
    Selecting proper genome assembly is key for downstream analysis in genomics studies. However, the availability of many genome assembly tools and the huge variety of their running parameters challenge this task. The existing online evaluation tools are limited to specific taxa or provide just a one-sided view on the assembly quality. We present WebQUAST, a web server for multifaceted quality assessment and comparison of genome assemblies based on the state-of-the-art QUAST tool. The server is freely available at https://www.ccb.uni-saarland.de/quast/. WebQUAST can handle an unlimited number of genome assemblies and evaluate them against a user-provided or pre-loaded reference genome or in a completely reference-free fashion. We demonstrate key WebQUAST features in three common evaluation scenarios: assembly of an unknown species, a model organism, and a close variant of it

    PolyGR and polyPR knock-in mice reveal a conserved neuroprotective extracellular matrix signature in C9orf72 ALS/FTD neurons

    Get PDF
    Dipeptide repeat proteins are a major pathogenic feature of C9orf72 amyotrophic lateral sclerosis (C9ALS)/frontotemporal dementia (FTD) pathology, but their physiological impact has yet to be fully determined. Here we generated C9orf72 dipeptide repeat knock-in mouse models characterized by expression of 400 codon-optimized polyGR or polyPR repeats, and heterozygous C9orf72 reduction. (GR)400 and (PR)400 knock-in mice recapitulate key features of C9ALS/FTD, including cortical neuronal hyperexcitability, age-dependent spinal motor neuron loss and progressive motor dysfunction. Quantitative proteomics revealed an increase in extracellular matrix (ECM) proteins in (GR)400 and (PR)400 spinal cord, with the collagen COL6A1 the most increased protein. TGF-尾1 was one of the top predicted regulators of this ECM signature and polyGR expression in human induced pluripotent stem cell neurons was sufficient to induce TGF-尾1 followed by COL6A1. Knockdown of TGF-尾1 or COL6A1 orthologues in polyGR model Drosophila exacerbated neurodegeneration, while expression of TGF-尾1 or COL6A1 in induced pluripotent stem cell-derived motor neurons of patients with C9ALS/FTD protected against glutamate-induced cell death. Altogether, our findings reveal a neuroprotective and conserved ECM signature in C9ALS/FTD.</p

    Mikheenko, Alla

    No full text

    NPvis: An Interactive Visualizer of Peptidic Natural Product&ndash;MS/MS Matches

    No full text
    Peptidic natural products (PNPs) represent a medically important class of secondary metabolites that includes antibiotics, anti-inflammatory and antitumor agents. Advances in tandem mass spectra (MS/MS) acquisition and in silico database search methods have enabled high-throughput PNP discovery. However, the resulting spectra annotations are often error-prone and their validation remains a bottleneck. Here, we present NPvis, a visualizer suitable for the evaluation of PNP&ndash;MS/MS matches. The tool interactively maps annotated spectrum peaks to the corresponding PNP fragments and allows researchers to assess the match correctness. NPvis accounts for the wide chemical diversity of PNPs that prevents the use of the existing proteomics visualizers. Moreover, NPvis works even if the exact chemical structure of the matching PNP is unknown. The tool is available online and as a standalone application. We hope that it will benefit the community by streamlining PNP data analysis and validation

    Accurate isoform discovery with IsoQuant using long reads

    No full text
    Publisher Copyright: 漏 2023, The Author(s).Annotating newly sequenced genomes and determining alternative isoforms from long-read RNA data are complex and incompletely solved problems. Here we present IsoQuant鈥攁 computational tool using intron graphs that accurately reconstructs transcripts both with and without reference genome annotation. For novel transcript discovery, IsoQuant reduces the false-positive rate fivefold and 2.5-fold for Oxford Nanopore reference-based or reference-free mode, respectively. IsoQuant also improves performance for Pacific Biosciences data.Peer reviewe

    MetaMiner: A Scalable Peptidogenomics Approach for Discovery of Ribosomal Peptide Natural Products with Blind Modifications from Microbial Communities

    No full text
    Ribosomally synthesized and post-translationally modified peptides (RiPPs) are an important class of natural products that contain antibiotics and a variety of other bioactive compounds. The existing methods for discovery of RiPPs by combining genome mining and computational mass spectrometry are limited to discovering specific classes of RiPPs from small datasets, and these methods fail to handle unknown post-translational modifications. Here, we present MetaMiner, a software tool for addressing these challenges that is compatible with large-scale screening platforms for natural product discovery. After searching millions of spectra in the Global Natural Products Social (GNPS) molecular networking infrastructure against just eight genomic and metagenomic datasets, MetaMiner discovered 31 known and seven unknown RiPPs from diverse microbial communities, including human microbiome and lichen microbiome, and microorganisms isolated from the International Space Station

    Single-nuclei isoform RNA sequencing unlocks barcoded exon connectivity in frozen brain tissue

    No full text
    Single-nuclei RNA sequencing characterizes cell types at the gene level. However, compared to single-cell approaches, many single-nuclei cDNAs are purely intronic, lack barcodes and hinder the study of isoforms. Here we present single-nuclei isoform RNA sequencing (SnISOr-Seq). Using microfluidics, PCR-based artifact removal, target enrichment and long-read sequencing, SnISOr-Seq increased barcoded, exon-spanning long reads 7.5-fold compared to naive long-read single-nuclei sequencing. We applied SnISOr-Seq to adult human frontal cortex and found that exons associated with autism exhibit coordinated and highly cell-type-specific inclusion. We found two distinct combination patterns: those distinguishing neural cell types, enriched in TSS-exon, exon-polyadenylation-site and non-adjacent exon pairs, and those with multiple configurations within one cell type, enriched in adjacent exon pairs. Finally, we observed that human-specific exons are almost as tightly coordinated as conserved exons, implying that coordination can be rapidly established during evolution. SnISOr-Seq enables cell-type-specific long-read isoform analysis in human brain and in any frozen or hard-to-dissociate sample
    corecore