1,367 research outputs found
On the Equivalence of Three-Particle Scattering Formalisms
In recent years, different on-shell scattering
formalisms have been proposed to be applied to both lattice QCD and infinite
volume scattering processes. We prove that the formulation in the infinite
volume presented by Hansen and Sharpe in Phys.~Rev.~D92, 114509 (2015) and
subsequently Brice\~no, Hansen, and Sharpe in Phys.~Rev.~D95, 074510 (2017) can
be recovered from the -matrix representation, derived on the basis of
-matrix unitarity, presented by Mai {\em et al.} in Eur.~Phys.~J.~A53, 177
(2017) and Jackura {\em et al.} in Eur.~Phys.~J.~C79, 56 (2019). Therefore,
both formalisms in the infinite volume are equivalent and the physical content
is identical. Additionally, the Faddeev equations are recovered in the
non-relativistic limit of both representations.Comment: 13 pages, 5 figure
On the and Photoproduction Beam Asymmetry at High Energies
We show that, in the Regge limit, beam asymmetries in and
photoproduction are sensitive to hidden strangeness components. Under
reasonable assumptions about the couplings we estimate the contribution of the
Regge pole, which is expected to be the dominant hidden strangeness
contribution. The ratio of the asymmetries in and production is
estimated to be close to unity in the forward region at the photon energy ~GeV, relevant for the upcoming
measurements at Jefferson Lab.Comment: 9 pages, 4 figure
Amplitude analysis and the nature of the Zc(3900)
The microscopic nature of the XYZ states remains an unsettled topic. We show
how a thorough amplitude analysis of the data can help constraining models of
these states. Specifically, we consider the case of the Zc(3900) peak and
discuss possible scenarios of a QCD state, virtual state, or a kinematical
enhancement. We conclude that current data are not precise enough to
distinguish between these hypotheses, however, the method we propose, when
applied to the forthcoming high-statistics measurements should shed light on
the nature of these exotic enhancements.Comment: 14 pages, 10 figures, 3 tables. Version accepted for publication on
Phys.Lett.
Analyticity constraints for hadron amplitudes : going high to heal low energy issues
Analyticity constitutes a rigid constraint on hadron scattering amplitudes. This property is used to relate models in different energy regimes. Using meson photoproduction as a benchmark, we show how to test contemporary low-energy models directly against high-energy data. This method pinpoints deficiencies of the models and treads a path to further improvement. The implementation of this technique enables one to produce more stable and reliable partial waves for future use in hadron spectroscopy and new physics searches
Determination of the pole position of the lightest hybrid meson candidate
Mapping states with explicit gluonic degrees of freedom in the light sector
is a challenge, and has led to controversies in the past. In particular, the
experiments have reported two different hybrid candidates with spin-exotic
signature, pi1(1400) and pi1(1600), which couple separately to eta pi and eta'
pi. This picture is not compatible with recent Lattice QCD estimates for hybrid
states, nor with most phenomenological models. We consider the recent partial
wave analysis of the eta(') pi system by the COMPASS collaboration. We fit the
extracted intensities and phases with a coupled-channel amplitude that enforces
the unitarity and analyticity of the S-matrix. We provide a robust extraction
of a single exotic pi1 resonant pole, with mass and width 1564 +- 24 +- 86 MeV
and 492 +- 54 +- 102 MeV, which couples to both eta(') pi channels. We find no
evidence for a second exotic state. We also provide the resonance parameters of
the a2(1320) and a2'(1700).Comment: 6 pages + 3 pages of supplemental material. Version to appear on
Phys.Rev.Let
Finite-Energy Sum Rules in Eta Photoproduction off the Nucleon
The reaction is studied in the high-energy regime
(with photon lab energies GeV) using
information from the resonance region through the use of finite-energy sum
rules (FESR). We illustrate how analyticity allows one to map the t-dependence
of the unknown Regge residue functions. We provide predictions for the energy
dependence of the beam asymmetry at high energies.Comment: Joint Physics Analysis Cente
Image Processing Based Detection of Fungal Diseases in Plants
AbstractThis paper presents a study on the image processing techniques used to identify and classify fungal disease symptoms affected on different agriculture/horticulture crops. Computers have been used to mechanization, automation, and to develop decision support system for taking strategic decision on the agricultural production and protection research. The plant disease diagnosis is limited by the human visual capabilities because most of the first symptoms are microscopic. As plant health monitoring is still carried out by humans due to the visual nature of the plant monitoring task, computer vision techniques seem to be well adapted. One of the areas considered here is the processing of images of disease affected agriculture/horticulture crops. The quantity and quality of plant products gets reduced by plant diseases. The goal is to detect, to identify, and to accurately quantify the first symptoms of diseases. Plant diseases are caused by bacteria, fungi, virus, nematodes, etc., of which fungi is the main disease causing organism. Focus has been done on the early detection of fungal disease based on the symptoms
Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering
A semi-inclusive measurement of charged hadron multiplicities in deep
inelastic muon scattering off an isoscalar target was performed using data
collected by the COMPASS Collaboration at CERN. The following kinematic domain
is covered by the data: photon virtuality (GeV/), invariant
mass of the hadronic system GeV/, Bjorken scaling variable in the
range , fraction of the virtual photon energy carried by the
hadron in the range , square of the hadron transverse momentum
with respect to the virtual photon direction in the range 0.02 (GeV/ (GeV/). The multiplicities are presented as a
function of in three-dimensional bins of , , and
compared to previous semi-inclusive measurements. We explore the
small- region, i.e. (GeV/), where
hadron transverse momenta are expected to arise from non-perturbative effects,
and also the domain of larger , where contributions from
higher-order perturbative QCD are expected to dominate. The multiplicities are
fitted using a single-exponential function at small to study
the dependence of the average transverse momentum on , and . The power-law behaviour of the
multiplicities at large is investigated using various
functional forms. The fits describe the data reasonably well over the full
measured range.Comment: 28 pages, 20 figure
Leading-order determination of the gluon polarisation from semi-inclusive deep inelastic scattering data
Using a novel analysis technique, the gluon polarisation in the nucleon is
re-evaluated using the longitudinal double-spin asymmetry measured in the cross
section of semi-inclusive single-hadron muoproduction with photon virtuality
. The data were obtained by the COMPASS experiment at
CERN using a 160 GeV/ polarised muon beam impinging on a polarised LiD
target. By analysing the full range in hadron transverse momentum ,
the different -dependences of the underlying processes are separated
using a neural-network approach. In the absence of pQCD calculations at
next-to-leading order in the selected kinematic domain, the gluon polarisation
is evaluated at leading order in pQCD at a hard scale of . It is determined in three intervals
of the nucleon momentum fraction carried by gluons, , covering the
range ~ and does not exhibit a significant
dependence on . The average over the three intervals, at
, suggests that the gluon polarisation
is positive in the measured range.Comment: 14 pages, 6 figure
- …
