47 research outputs found

    Anti-angiogenic effects of VEGF stimulation on endothelium deficient in phosphoinositide recycling

    Get PDF
    Anti-angiogenic therapies have generated significant interest for their potential to combat tumor growth. However, tumor overproduction of pro-angiogenic ligands can overcome these therapies, hampering success of this approach. To circumvent this problem, we target the resynthesis of phosphoinositides consumed during intracellular transduction of pro-angiogenic signals in endothelial cells (EC), thus harnessing the tumors own production of excess stimulatory ligands to deplete adjacent ECs of the capacity to respond to these signals. Using zebrafish and human endothelial cells in vitro, we show ECs deficient in CDP-diacylglycerol synthase 2 are uniquely sensitive to increased vascular endothelial growth factor (VEGF) stimulation due to a reduced capacity to re-synthesize phosphoinositides, including phosphatidylinositol-(4,5)-bisphosphate (PIP2), resulting in VEGF-exacerbated defects in angiogenesis and angiogenic signaling. Using murine tumor allograft models, we show that systemic or EC specific suppression of phosphoinositide recycling results in reduced tumor growth and tumor angiogenesis. Our results suggest inhibition of phosphoinositide recycling provides a useful anti-angiogenic approach

    Cyclin-dependent kinase 5 mediates pleiotrophin-induced endothelial cell migration

    Get PDF
    Pleiotrophin (PTN) stimulates endothelial cell migration through binding to receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) and ανβ3 integrin. Screening for proteins that interact with RPTPβ/ζ and potentially regulate PTN signaling, through mass spectrometry analysis, identified cyclin-dependent kinase 5 (CDK5) activator p35 among the proteins displaying high sequence coverage. Interaction of p35 with the serine/threonine kinase CDK5 leads to CDK5 activation, known to be implicated in cell migration. Protein immunoprecipitation and proximity ligation assays verified p35-RPTPβ/ζ interaction and revealed the molecular association of CDK5 and RPTPβ/ζ. In endothelial cells, PTN activates CDK5 in an RPTPβ/ζ- and phosphoinositide 3-kinase (PI3K)-dependent manner. On the other hand, c-Src, ανβ3 and ERK1/2 do not mediate the PTN-induced CDK5 activation. Pharmacological and genetic inhibition of CDK5 abolished PTN-induced endothelial cell migration, suggesting that CDK5 mediates PTN stimulatory effect. A new pyrrolo[2,3-α]carbazole derivative previously identified as a CDK1 inhibitor, was found to suppress CDK5 activity and eliminate PTN stimulatory effect on cell migration, warranting its further evaluation as a new CDK5 inhibitor. Collectively, our data reveal that CDK5 is activated by PTN, in an RPTPβ/ζ-dependent manner, regulates PTN-induced cell migration and is an attractive target for the inhibition of PTN pro-angiogenic properties

    Lung cancer cell migration is regulated via repressing growth factor PTN/RPTP β/ζ signaling by menin

    Get PDF
    Menin encoded by the multiple endocrine neoplasia type 1 (MEN1) gene is associated with chromatin and the nuclear matrix and exerts multiple biological functions including regulation of cell proliferation and adhesion. Men1 mutations increase the likelihood of lung cancer development in mice. Menin expression is reduced in certain human non-small cell lung cancer cells, and reduction of menin is closely correlated with increased lung cancer metastasis to lymph nodes. However, it is poorly understood whether menin affects migration of lung cancer cells. In this study, we show that menin-regulated A549 lung cancer cell migration, which was mediated by growth factor pleiotrophin (PTN) and its cell surface receptor, protein tyrosine phosphatase beta/zeta (RPTP β/ζ). Ectopic menin expression significantly repressed PTN transcription, but indirectly inhibited RPTP β/ζ expression through repressing PTN expression. Further studies revealed that menin-regulated cell migration through PTN/RPTP β/ζ, in conjunction with integrin αvβ3, focal adhesion kinase, phosphatidylinositol 3-kinase and phosphorylated extracellular signal regulated kinase 1/2. These findings provide mechanistic insights into the molecular basis for menin/PTN-mediated regulation of A549 lung cancer cell migration

    Genes Involved in Systemic and Arterial Bed Dependent Atherosclerosis - Tampere Vascular Study

    Get PDF
    BACKGROUND: Atherosclerosis is a complex disease with hundreds of genes influencing its progression. In addition, the phenotype of the disease varies significantly depending on the arterial bed. METHODOLOGY/PRINCIPAL FINDINGS: We characterized the genes generally involved in human advanced atherosclerotic (AHA type V-VI) plaques in carotid and femoral arteries as well as aortas from 24 subjects of Tampere Vascular study and compared the results to non-atherosclerotic internal thoracic arteries (n=6) using genome-wide expression array and QRT-PCR. In addition we determined genes that were typical for each arterial plaque studied. To gain a comprehensive insight into the pathologic processes in the plaques we also analyzed pathways and gene sets dysregulated in this disease using gene set enrichment analysis (GSEA). According to the selection criteria used (>3.0 fold change and p-value <0.05), 235 genes were up-regulated and 68 genes down-regulated in the carotid plaques, 242 genes up-regulated and 116 down-regulated in the femoral plaques and 256 genes up-regulated and 49 genes down-regulated in the aortic plaques. Nine genes were found to be specifically induced predominantly in aortic plaques, e.g., lactoferrin, and three genes in femoral plaques, e.g., chondroadherin, whereas no gene was found to be specific for carotid plaques. In pathway analysis, a total of 28 pathways or gene sets were found to be significantly dysregulated in atherosclerotic plaques (false discovery rate [FDR] <0.25). CONCLUSIONS: This study describes comprehensively the gene expression changes that generally prevail in human atherosclerotic plaques. In addition, site specific genes induced only in femoral or aortic plaques were found, reflecting that atherosclerotic process has unique features in different vascular beds

    Protein tyrosine phosphatases in glioma biology

    Get PDF
    Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic strategies. The drastically increased knowledge about the molecular underpinnings of gliomas during the last decade has elicited high expectations for a more rational and effective therapy for these tumors. Most studies on the molecular pathways involved in glioma biology thus far had a strong focus on growth factor receptor protein tyrosine kinase (PTK) and phosphatidylinositol phosphatase signaling pathways. Except for the tumor suppressor PTEN, much less attention has been paid to the PTK counterparts, the protein tyrosine phosphatase (PTP) superfamily, in gliomas. PTPs are instrumental in the reversible phosphorylation of tyrosine residues and have emerged as important regulators of signaling pathways that are linked to various developmental and disease-related processes. Here, we provide an overview of the current knowledge on PTP involvement in gliomagenesis. So far, the data point to the potential implication of receptor-type (RPTPδ, DEP1, RPTPμ, RPTPζ) and intracellular (PTP1B, TCPTP, SHP2, PTPN13) classical PTPs, dual-specific PTPs (MKP-1, VHP, PRL-3, KAP, PTEN) and the CDC25B and CDC25C PTPs in glioma biology. Like PTKs, these PTPs may represent promising targets for the development of novel diagnostic and therapeutic strategies in the treatment of high-grade gliomas

    Human Dectin-1 Deficiency Impairs Macrophage-Mediated Defense Against Phaeohyphomycosis

    Get PDF
    Subcutaneous phaeohyphomycosis typically affects immunocompetent individuals following traumatic inoculation. Severe or disseminated infection can occur in CARD9 deficiency or after transplantation, but the mechanisms protecting against phaeohyphomycosis remain unclear. We evaluated a patient with progressive, refractory Corynespora cassiicola phaeohyphomycosis and found that he carried biallelic deleterious mutations in CLEC7A encoding the CARD9-coupled, β-glucan-binding receptor, Dectin-1. The patient\u27s PBMCs failed to produce TNF-α and IL-1β in response to β-glucan and/or C. cassiicola. To confirm the cellular and molecular requirements for immunity against C. cassiicola, we developed a mouse model of this infection. Mouse macrophages required Dectin-1 and CARD9 for IL-1β and TNF-α production, which enhanced fungal killing in an interdependent manner. Deficiency of either Dectin-1 or CARD9 was associated with more severe fungal disease, recapitulating the human observation. Because these data implicated impaired Dectin-1 responses in susceptibility to phaeohyphomycosis, we evaluated 17 additional unrelated patients with severe forms of the infection. We found that 12 out of 17 carried deleterious CLEC7A mutations associated with an altered Dectin-1 extracellular C-terminal domain and impaired Dectin-1-dependent cytokine production. Thus, we show that Dectin-1 and CARD9 promote protective TNF-α- and IL-1β-mediated macrophage defense against C. cassiicola. More broadly, we demonstrate that human Dectin-1 deficiency may contribute to susceptibility to severe phaeohyphomycosis by certain dematiaceous fungi

    Pleiotrophin

    No full text

    A risk-based design methodology for pollution prevention and control

    No full text
    Stricter international regulation enacted in the early 1990s and advances made in design and safe operation of tankers saw a significant improvement in the tanker industry safety record. According to The International Tanker Owners Pollution Federation, oil pollution from tankers for the period 1997-03 was only 25% of the pollution for the period 1990-1996. The total number of reported tanker incidents with pollution for the period 1997-03 was only 37% of the figure for the period 1990-1996, while at the same time the total oil trade has increased by 15%. Two particular accidents have detracted from the tanker industry’s good record. The cause and effect of the Erika (1999) and Prestige (2002) incidents, with their heavy oil cargoes causing extensive pollution on European shores, have had major political, social and economic implications. Single hull tankers have been gradually being phased out according to the International Maritime Organization’s global regime for more than ten years, but last year Europe went beyond international regulations and implemented a unilateral accelerated phase-out, which has since led to the international phase-out being accelerated too. The control system for tankers has also been tightened up at the same time as the industry itself has taken initiatives to ensure that the structural integrity of tankers is maintained to good standards throughout the life of the ships. Despite the political and economic importance of these issues, some of the relevant new regulation still tends to be made before incidents have been properly investigated. Political pressure rather than proper risk analysis may determine which types of oil tanker pose the highest pollution risk, the relative safety of new tanker designs, or the most appropriate response to an evolving oil pollution incident. To address this issue rationally, the European Commission provided funding to the tune of €2.2 million for a 3-year project entitled “Pollution Prevention and Control – Safe Transportation of Hazardous Goods by Tankers” (POP&C) under Framework Programme 6 (FP6), which started earlier this year. The POP&C project proposes to deliver a framework and suitable tools for a methodological assessment of risk to be undertaken to provide a rational basis for making decisions pertaining the design, operation and regulation of oil tankers. Such support can be used to make more informed decisions, which will in turn contribute to reducing the likelihood and severity of future oil spills. The project brings together prime protagonists from the area of maritime safety in Europe. Deriving from the foregoing exciting developments, it is the purpose of this paper to present the main philosophy behind the POP&C project and to detail and explain the basics of the methodology to be adopted aiming to achieve the specific objectives outlined abov
    corecore