461 research outputs found

    LPM effect as the origin of the jet fragmentation scaling in heavy ion collisions

    Full text link
    We address a recent puzzling result from the LHC: the jet fragmentation functions measured in PbPbPbPb and pppp collisions appear very similar in spite of a large medium-induced energy loss (we will call this "jet fragmentation scaling", JFS). To model the real-time non-perturbative effects in the propagation of a high energy jet through the strongly coupled QCD matter, we adopt an effective dimensionally reduced description in terms of the (1+1)(1+1) quasi-Abelian Schwinger theory. This theory is exactly soluble at any value of the coupling and shares with QCD the properties of dynamical generation of "mesons" with a finite mass and the screening of "quark" charge that are crucial for describing the transition of the jet into hadrons. We find that this approach describes quite well the vacuum jet fragmentation in e+ee^+e^- annihilation at z0.2z\geq0.2 at jet energies in the range of the LHC heavy ion measurements (zz is the ratio of hadron and jet momenta). In QCD medium, we find that the JFS is reproduced if the mean free path λ\lambda of the jet is short, λ0.3\lambda \leq 0.3 fm, which is in accord with the small shear viscosity inferred from the measurements of the collective flow. The JFS holds since at short mean free path the quantum interference (analogous to the Landau-Pomeranchuk-Migdal effect in QED) causes the produced mesons to have low momenta pmp \sim m, where m0.6m \simeq 0.6 GeV is the typical meson mass. Meanwhile the induced jet energy loss at short mean free path is much larger than naively expected in string models.Comment: 4 pages, 4 figure

    Abelian Landau-Pomeranchuk-Migdal effects

    Full text link
    It is shown that the high-energy expansion of the scattering amplitude calculated from Feynman diagrams factorizes in such a way that it can be reduced to the eikonalized form up to the terms of inverse power in energy in accordance with results obtained by solving the Klein-Gordon equation. Therefore the two approaches when applied to the suppression of the emission of soft photons by fast charged particles in dense matter should give rise to the same results. A particular limit of thin targets is briefly discussed.Comment: 14 pages, LATEX, 1 Fig. ps, submitted to Mod. Phys. Lett.

    Experimental Research of the Diffraction and Vavilov-Cherenkov Radiation Generation in a Teflon Target

    Full text link
    Geometry of Vavilov-Cherekov (VChR) radiation when an electron moves close to a dielectric target is in analogy to diffraction radiation (DR) geometry. In this case we may expect DR generation from the upstream face of the target besides that VChR. The joint observation of these booth types of radiation is very interesting from the pseudo-photon viewpoint, which is applicable for relativistic electrons. Unexpected results obtained in our experiment insist on reflection about nature both DR and VChR. The experiment was performed on the relativistic electron beam of the microtron of Tomsk Polytechnic University.Comment: This article will be published in Journal of Physic

    Exclusive W + photon production in proton-antiproton collisions I: general formalism

    Full text link
    We present a detailed computation of the fully exclusive cross section of p + antip --> W + photon + X with X = 0 and 1 jet in the framework of the factorization theorem and dimensional regularization. Order alpha-strong and photon bremsstrahlung contributions are discussed in the MS-bar mass factorization scheme. The resulting expressions are ready to be implemented numerically using Monte Carlo techniques to compute single and double differential cross sections and correlations between outgoing pairs of particles.Comment: ITP-SB-93-72, 40 pages, LateX. 3*4 figures in separate file. ([email protected]) ([email protected]

    Transition radiation in the quantum regime as a diffractive phenomenon

    Full text link
    We demonstrate that the transition photon radiation and pair creation can be interpreted as a diffractive phenomenon in terms of the light-cone wave functions in a way similar to the Good-Walker approach [6] to the diffraction dissociation. Our formulas for spectra agree with those obtained by Baier and Katkov [5] within the quasiclassical operator method. However, there is some disagreement with earlier results by Garibyan [4].Comment: 7 pages. The journal version published in Phys. Lett.

    Radiative energy loss of high energy quarks and gluons in a finite volume quark-gluon plasma

    Get PDF
    The medium induced energy loss spectrum of a high energy quark or gluon traversing a hot QCD medium of finite volume is studied. We model the interaction by a simple picture of static scattering centres. The total induced energy loss is found to grow as L2L^2, where LL is the extent of the medium. The solution of the energy loss problem is reduced to the solution of a Schr\"odinger-like equation whose ``potential'' is given by the single-scattering cross section of the high energy parton in the medium. These resuls should be directly applicable to a quark-gluon plasma.Comment: 29 pages, LaTeX2e, 43 figure

    Coherent Bremsstrahlung in Imperfect Periodic Atomic Structures

    Full text link
    Coherent bremsstrahlung of high energy electrons moving in a three-dimensional imperfect periodic lattice consisting of a complicated system of atoms is considered. On the basis of the normalized probability density function of the distribution of atomic centers in the fundamental cell the relations describing coherent and incoherent contributions into cross sections are obtained. In particular, the cross section of coherent bremsstrahlung in complex polyatomic single crystals is found. The peculiarities of formation and possibilities of utilization of coherent processes are discussed.Comment: 23 pages, 8 figures, to be published in Phys. Rev.

    Effective dynamics of a nonabelian plasma out of equilibrium

    Full text link
    Starting from kinetic theory, we obtain a nonlinear dissipative formalism describing the nonequilibrium evolution of scalar colored particles coupled selfconsistently to nonabelian classical gauge fields. The link between the one-particle distribution function of the kinetic description and the variables of the effective theory is determined by extremizing the entropy production. This method does not rely on the usual gradient expansion in fluid dynamic variables, and therefore the resulting effective theory can handle situations where these gradients (and hence the momentum-space anisotropies) are expected to be large. The formalism presented here, being computationally less demanding than kinetic theory, may be useful as a simplified model of the dynamics of color fields during the early stages of heavy ion collisions and in phenomena related to parton energy loss.Comment: 20 two-column pages, 2 figures. v3: minor changes. Accepted for publication in Phys. Rev.
    corecore