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Abstract Microfluidics is a fast growing field in which the manipulation of bubbles in liquid phase is of 
utmost importance. In this paper, the absorption of spherical bubbles in a square microchannel is investigated 
for a bubbly flow. Numerical simulations of the gas-liquid two-phase flow and the mass transfer around 
spherical bubbles in a square microchannel are carried out. Correlations are established for the bubble 
velocity and the mass transfer rate. A model for the dissolution of spherical bubbles along a square 
microchannel is proposed in the case of the bubbly flow regime and validated using existing experimental 
data. This model can be used, for instance, for designing microabsorbers for lab-on-a-chip applications. 
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1. Introduction 
  
 Nowadays, microfluidic devices are 
increasingly used. Indeed, they enable using 
less reactant, having a deep control on the 
involved processes, lowering the risk due to 
the use of high quantity of hazardous materials 
and being easily handled. Microfluidic devices 
involving gas-liquid two-phase flows in 
microchannels are encountered in many 
circumstances such as gas-liquid absorption. 
Gas-liquid two-phase flow patterns were 
investigated in Cubaud and Ho (2004) and in 
Kim et al. (2011) for square and rectangular 
microchannels. In both papers, five main gas-
liquid two-phase flow regimes were reported 
as a function of the gas and liquid superficial 
velocities and named, after Cubaud and Ho 
(2004), as: bubbly, wedging, slug, annular and 
dry flows. The bubbly flow corresponds to 
discrete spherical bubbles with diameters 
smaller than the channel height and moving in 
a continuous liquid phase. The mass transfer 
around gas bubbles for different two-phase 
flow regimes was studied in square and 
rectangular microchannels (Kashid et al. 
(2011), Sun and Cubaud (2011), Cubaud et al. 
(2012)). These studies mainly focused on the 
slug flow, and the transition to bubbly flow 
was only observed in the experiments by 
Cubaud et al. (2012). 
 To the best of our knowledge, the gas-

liquid two-phase flow and the mass transfer 
around bubbles in square microchannels for 
the bubbly flow regime have not been 
analyzed yet, neither theoretically neither 
numerically. The aim of the present work is 
therefore to fill the gap by developing a 
numerical procedure in order to simulate the 
gas-liquid two-phase flow and the mass 
transfer around spherical bubbles in a square 
microchannel. Correlations for the bubble 
velocity and the mass transfer rate around 
spherical bubbles in a square microchannel are 
proposed and a model describing the 
dissolution of spherical bubbles along a square 
microchannel is presented, and compared to 
available experimental data. 
 
2. Problem statement 
  
 A square microchannel of length L  and 
width w  is considered. A segment of this 
microchannel with a length L and containing, 
at its center, a spherical bubble of diameter d 
is studied. Taking benefit of symmetries, only 
a quarter of the microchannel is analyzed. It is 
described in Fig. 1, including the labels of the 
boundaries and notations. 

 
Figure 1: Computational domain for modelling a spherical 
bubble in a segment of a square microchannel. 
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 In the laboratory reference frame (x, y, z), 
the bubble moves through the microchannel 
with a velocity V  in the positive x 
direction. The liquid and gas mixture moves 
with a total superficial velocity J  in the same 
direction. J  is equal to (Q + Q )/w , with 
Q  and Q  the volumetric liquid and gas 
flow rates, respectively. The reference frame 
attached to the center of the bubble (x, y, z) 
moves at the bubble velocity V  in the 
positive x  direction. Therefore, in (x, y, z) , 
the bubble is stationary, the liquid-gas mixture 
moves with a velocity V − J  in the positive 
x direction and the walls of the microchannel 
move with a velocity V  in the positive x 
direction. 
 As the density and the viscosity of the 
liquid are much higher than those of the gas, a 
one-sided approach is used where only the 
liquid flow is considered and the bubble is a 
spherical hole in the computational domain 
with a mass flux at its surface. The liquid flow 
and the mass transfer around the bubble inside 
the square microchannel are analyzed by 
solving, in (x, y, z), the continuity, the Navier-
Stokes and the mass transport equations in 
stationary conditions. 
 The boundary conditions for the liquid 
flow and the mass transport are presented in 
Table 1. Periodic boundary conditions are used 
between the IN and the OUT planes in order to 
reproduce the chain of bubbles that are 
generated in real microchannels. Therefore, a 
pressure difference ∆P  and a concentration 
difference ∆C exist between the IN and the 
OUT planes and are parts of the computational 
unknowns. As periodic conditions are used, L 
represents the distance between two successive 
bubbles. 

 

Boundary Boundary conditions 
for the liquid flow 

Boundary conditions 
for the mass transport 

wall Moving with a velocity 
(V , 0,0) with a no slip 
condition 

No mass flux 

bubble Undeformable and 
stationary surface with a 
stress-free condition 

Saturation concentration 
C  

sym Symmetry conditions Symmetry conditions 
IN and 
OUT 

Periodic conditions with 
a mass flow rate equal to 
(V − J )ρw  

Periodic conditions with 
an average concentration 
equal to C  on the 
plane IN 

Table 1: Boundary conditions for the liquid flow and the mass 
transport. 

 Three non-dimensional control parameters 
are used: d/w , Re =  and Sc = , 
with ρ  the density of the liquid [kg/m3],    
μ the dynamic viscosity of the liquid [Pa s] 
and D  the diffusion coefficient of the 
dissolved gas [m2/s]. The ranges covered by 
these three non-dimensional control 
parameters are 0.15 ≤ d/w ≤ 0.75 , 
5.74 ≤ Re ≤ 28.7  and 150 ≤ Sc ≤ 550 . 
These ranges ensure covering the realistic 
values of the parameters encountered for usual 
gas and liquid combinations. Two non-
dimensional variables are defined for the post-
processing: V /J  and the Sherwood number 
Sh = , with k  the mass transfer coefficient 
across the bubble interface. 
 

3. Numerical procedure 
 
 Based on the computational domain of Fig. 
1, a grid is generated for each value of d/w 
using the software Gambit 2.4. Refined zones 
for the mesh are used around the bubble and 
next to the walls to ensure that the diffusion 
boundary layers are correctly captured. The 
grid independence is checked for each value of 
d/w.  
 For each generated grid, the system of 
equations defining the problem is solved in 
stationary conditions in the liquid phase with 
the boundary conditions of Table 1. The three-
dimensional version with a double precision of 
the solver Ansys Fluent 14.5 is used for this 
purpose.  
 The steady bubble velocity V  implies 
that the x-component of the force F  exerted 
by the liquid on the bubble surface should be 
equal to zero. It provides a relation between J  
and V . Here, J  is imposed (through Re ) 
and V  is then evaluated such that F  
vanishes. From the numerical results of the 
mass transport, the mass transfer coefficient 
k  is calculated by dividing the mass flow rate 
at the bubble surface by the bubble surface 
area and by the driving concentration 
difference C − C . The length of the 
computational domain L  is adjusted to a 
value, depending on d, J  and D, such that 
when L is increased by 200 μm, the relative 
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change in k  is lower than 1%. 
 
4. Correlations 
 
 Based on the form of the correlation of 
Cubaud et al. (2012) and the limiting values of 
V /J  for d → 0  and d → ∞ , a form of 
correlation is proposed for V /J  and fitted to 
the numerical results. It leads to 

= 1 + 1.1exp	[− ] .   (1) 
 Based on the form of well-known relation 
of Levich (1962) to express Sh  for the 
creeping flow around spheres with a stress-free 
condition, a form of correlation is proposed for 
Sh and fitted to the numerical results. It leads 
to 
  Sh = 2 + 3Re / Sc /  ,    (2) 

with Re = Re . 
 Equations (1) and (2) are established and 
valid for the range of control parameters given 
in section 2.     
         

5. Model for the bubble dissolution  
 

The liquid fraction α  is defined as 
      α = . (3) 

In order to calculate α  at a coordinate x 
along the microchannel, the bubble at the 
coordinate x  and the preceding one are 
considered with l(x) the distance between the 
centers of these two bubbles, as represented in 
Fig. 2. By definition, Q + Q = J w  and 
Q = ( )

	 ( )
V (x), the introduction of which 

in Equation (3) leads to: 
 α (x) = 1 − ( )

( )
( )
( )

 ,  (4) 
in which V (x)/J (x)  is calculated using 
Equation (1). 

 
Figure 2: Representation of two successive bubbles in 
the microchannel. 

 The variation of Q  along the 
microchannel can be neglected as the density 
of the gas is much lower than the density of 
the liquid.  
 It is assumed here that the relative variation 
of l(x) is equal to the relative variation of 
V , which leads to  
 l (x) = ( ) ( )

( )
 . (5) 

 The pressure drop in the liquid phase ∆P 
along a square microchannel for a laminar 
one-phase flow at a superficial velocity 
J = Q /w  can be calculated by 
 ∆P ≡ ρJ L =  , (6) 
where f = γμ

ρJ 푤 is the friction factor and 
γ is a constant equal to 56.8 for a square 
channel (Bruus (2008)). The pressure drop 
∆P  for a two-phase bubbly flow 
(characterized by α  close to unity) along the 
(same) square microchannel can be evaluated 
by 
 ∆P ≡ ∆ =  , (7) 
which has been shown by Cubaud and Ho 
(2004) to be valid. Assuming a linear pressure 
drop along the microchannel, the pressure in 
the liquid phase along the microchannel can be 
computed using 
 p (x) = −

( )
 . (8) 

 The pressure in the gas phase p  can be 
calculated from the pressure in the liquid 
phase using the Young-Laplace equation: 
 p = p(x) +

( )
	,  (9) 

where σ is the surface tension of the gas-
liquid interface. 
 A mass balance for the transferred species 
between the gas phase and the liquid phase 
written for a control segment of length ∆x 
leads, for ∆x → 0, to the following equation 
describing the evolution of the concentration 
of the dissolved gas in the liquid phase (C) 
along the microchannel: 
 C (x) = ( ) ( ) ( ) ( ) ( ) ( )

( )  ,  (10) 
with T the temperature (supposed constant in 
this work) and R the gas constant. 
 The change of the diameter of a bubble 
along a microchannel is due to the mass 
transfer between the bubble and the liquid 
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phase and the bubble expansion due to the 
pressure decrease along the microchannel, and 
is described by: 
 ( ) ( ) ( ) ( ) = − ( ) k (x)(Hp (x)− C(x)),  (11) 
where H  is the Henry coefficient of the 
dissolved gas and k (x)  is evaluated using 
Equation (2) and the definition of Sh. 
 To summarize, the complete model for the 
dissolution of spherical bubbles along a square 
microchannel in the bubbly flow regime 
consists of: 

- four first-order ordinary differential 
equations (Equations (5), (8), (10) and 
(11)); 

- the Young-Laplace equation (Equation 
(9));  

- the relation for α  (Equation (4)); 
- the correlations for V /J  (Equation (1)) 

and for Sh (Equation (2)). 
  
 Four boundary conditions are necessary for 
the first-order ordinary differential equations. 
These conditions are the values of l, p, C 
and d  at the position x = 0 , which are 
denoted l , p , C  and d , respectively. 
 
 
6. Comparison to the literature  
 
 The experimental data of Cubaud et al. 
(2012) can be used in order to validate the 
model for the dissolution of spherical bubbles 
along a square microchannel. Indeed, in the 
work of Cubaud et al. (2012), a bubbly flow is 
observed in a nearly square microchannel 
during a part of their experiments for the 
dissolution of CO2 in water at room 
temperature and atmospheric pressure. The 
microchannel has a width w = 87	µm, a 
height h = 100	µm and a length L ≈ 10 
cm. In the experimental data of Cubaud et al. 
(2012), t , α , V /J  and d  are recorded 
along the microchannel every 0.755 ms. These 
data are adapted in order to be able to compare 
them to the results computed with our model. 
The time t is converted to the coordinate x 
using a constant V  for a time interval. In the 
work of Cubaud et al. (2012), α  is evaluated 
by 1 −

	
 instead of 1 −

	
. It 

has been corrected here. The ratio V /J  of 

Cubaud et al. (2012) has also been corrected 
because J  is evaluated by J = J /α . As 
the microchannel is nearly square, w in the 
model is taken equal to its hydraulic diameter: 
w = . Only the parts of the experiments 
of Cubaud et al. (2012) where d/w ≤ 0.75 is 
considered (see Fig. 3). The coordinate x = x  
along the microchannel where d/w = 0.75 is 
used in the model as the inlet of the 
microchannel. The length of the microchannel 
L  used in the model is calculated by 
L = L − x .  

 
Figure 3: Sketch of the real microchannel, the segment 
considered in the model and the segment recorded by 
the camera in Cubaud et al. (2012). 
 From the adapted data of Cubaud et al. 
(2012), the boundary conditions l , p , C  
and d  are determined: d  is equal to 
0.75w , l  is calculated from the non 
corrected version of α  at the coordinate x  
by l =

	 ( ( ))
, p  is adjusted such 

that p(L ) = 101325	Pa  and C  is 
calculated by C = ( )

( )
( ) −

( )
( )

( )
, with “x ” the inlet position 

of the real microchannel. 
 The system of equations of the complete 
dissolution model described in Section 5 is 
solved with the boundary conditions given 
above for a square microchannel having the 
same hydraulic diameter as the microchannel 
of Cubaud et al. (2012) and a length L . The 
computed values of d/w , α  and V /J  
along the microchannel are compared to the 
experimental values of Cubaud et al. (2012) in 
Fig. 4. 
 The agreement is good between the 
computed and the experimental results for 
d/w  and α .  The small deviation between 
them can be explained by the fact that the 
bubble separation distances are smaller in the 
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experiments than in the numerical simulations 
and thus the mass transfer around the bubbles 
is influenced by the preceding bubbles. An 
accurate value for L  is not provided in the 
work of Cubaud et al. (2012) and thus the 
value of 10 cm used in the model is maybe not 
accurate enough. For V /J , a difference up to 
15% is observed between the numerical results 
and the experimental ones. This deviation 
could be explained by the fact that the bubble 
interface is maybe not perfectly clean in the 
experiments, which would invalidate the 
stress-free boundary condition used in the 
model. Another source of discrepancy can 
arise here from the fact that the correlations 
established for V /J  and Sh  are obtained 
for a square microchannel and not for a 
rectangular one as in the experiments of 
Cubaud et al. (2012). 

 
Figure 4: Comparison between the values of d/w, α  and 
V /J  computed with the model and the experimental results 
of Cubaud et al. (2012) for Q = 110	μl/min . x  is 
subtracted to the x coordinate of the experimental results and 
only the part of the microchannel where the images are 
recorded is considered for the comparison. 

7. Conclusion 
 
 The gas-liquid two-phase flow and the 
mass transfer around spherical bubbles in a 
square microchannel are studied numerically 
in this work. Correlations are established for 
V /J  and Sh. A model for the dissolution of 
spherical bubbles along a square microchannel 
in the bubbly flow regime is proposed. A quite 
good agreement is observed between the 
numerical results predicted using this model 
and the experimental data of Cubaud et al. 
(2012). It can be seen as a validation for the 
dissolution model as well as for the 
correlations for V /J  and Sh (Equations (1) 
and (2)).  
 The proposed correlations and model for 
the dissolution of spherical bubbles can be 
applied for square microchannels of various 
sizes and for various combinations of gas and 
liquid. They are used, for instance, for 
designing a lab-on-a-chip device for the 
absorption of O2 or H2 in methanol (to be 
published).  
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