This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Microfluidics is a fast growing field in which the manipulation of bubbles in liquid phase is of
utmost importance. In this paper, the absorption of spherical bubbles in a square microchannel is investigated
for a bubbly flow. Numerical simulations of the gas-liquid two-phase flow and the mass transfer around
spherical bubbles in a square microchannel are carried out. Correlations are established for the bubble
velocity and the mass transfer rate. A model for the dissolution of spherical bubbles along a square
microchannel is proposed in the case of the bubbly flow regime and validated using existing experimental
data. This model can be used, for instance, for designing microabsorbers for lab-on-a-chip applications