65 research outputs found

    Saturday, 20 October 1963

    Get PDF

    3D Simulations of Intracerebral Hemorrhage Detection Using Broadband Microwave Technology

    Get PDF
    Early, preferably prehospital, detection of intracranial bleeding after trauma or stroke would dramatically improve the acute care of these large patient groups. In this paper, we use simulated microwave transmission data to investigate the performance of a machine learning classification algorithm based on subspace distances for the detection of intracranial bleeding. A computational model, consisting of realistic human head models of patients with bleeding, as well as healthy subjects, was inserted in an antenna array model. The Finite-Difference Time-Domain (FDTD) method was then used to generate simulated transmission coefficients between all possible combinations of antenna pairs. These transmission data were used both to train and evaluate the performance of the classification algorithm and to investigate its ability to distinguish patients with versus without intracranial bleeding. We studied how classification results were affected by the number of healthy subjects and patients used to train the algorithm, and in particular, we were interested in investigating how many samples were needed in the training dataset to obtain classification results better than chance. Our results indicated that at least 200 subjects, i.e., 100 each of the healthy subjects and bleeding patients, were needed to obtain classification results consistently better than chance (p < 0.05 using Student\u27s t-test). The results also showed that classification results improved with the number of subjects in the training data. With a sample size that approached 1000 subjects, classifications results characterized as area under the receiver operating curve (AUC) approached 1.0, indicating very high sensitivity and specificity

    Microwave-Based Stroke Diagnosis Making Global Prehospital Thrombolytic Treatment Possible

    Get PDF
    Here, we present two different brain diagnostic devices based on microwave technology and the associated two first proof-of-principle measurements that show that the systems can differentiate hemorrhagic from ischemic stroke in acute stroke patients, as well as differentiate hemorrhagic patients from healthy volunteers. The system was based on microwave scattering measurements with an antenna system worn on the head. Measurement data were analyzed with a machine-learning algorithm that is based on training using data from patients with a known condition. Computer tomography images were used as reference. The detection methodology was evaluated with the leave-one-out validation method combined with a Monte Carlo-based bootstrap step. The clinical motivation for this project is that ischemic stroke patients may receive acute thrombolytic treatment at hospitals, dramatically reducing or abolishing symptoms. A microwave system is suitable for prehospital use, and therefore has the potential to allow significantly earlier diagnosis and treatment than today

    A wearable microwave instrument can detect and monitor traumatic abdominal injuries in a porcine model

    Get PDF
    Abdominal injury is a frequent cause of death for trauma patients, and early recognition is essential to limit fatalities. There is a need for a wearable sensor system for prehospital settings that can detect and monitor bleeding in the abdomen (hemoperitoneum). This study evaluates the potential for microwave technology to fill that gap. A simple prototype of a wearable microwave sensor was constructed using eight antennas. A realistic porcine model of hemoperitoneum was developed using anesthetized pigs. Ten animals were measured at healthy state and at two sizes of bleeding. Statistical tests and a machine learning method were used to evaluate blood detection sensitivity. All subjects presented similar changes due to accumulation of blood, which dampened the microwave signal (p<0.05). The machine learning analysis yielded an area under the receiver operating characteristic (ROC) curve (AUC) of 0.93, showing 100% sensitivity at 90% specificity. Large inter-individual variability of the healthy state signal complicated differentiation of bleedings from healthy state. A wearable microwave instrument has potential for accurate detection and monitoring of hemoperitoneum, with automated analysis making the instrument easy-to-use. Future hardware development is necessary to suppress measurement system variability and enable detection of smaller bleedings.publishedVersio

    A wearable microwave detector for diagnosing thoracic injuries-test on a porcine pneumothorax model

    Get PDF
    In the prehospital setting, a point-of-care diagnostic test is needed to diagnose pneumothorax (PTX) and monitor its progression to prevent unnecessary patient morbidity and mortality. Ultrasonography is more sensitive than supine chest x-ray for diagnosing PTX, but the accuracy depends on the experience of the operator. Therefore, a non-operator dependent instrument would be valuable for detection and continuous monitoring of an evolving PTX

    Auditory Cortex Responses to Clicks and Sensory Modulation Difficulties in Children with Autism Spectrum Disorders (ASD)

    Get PDF
    Auditory sensory modulation difficulties are common in autism spectrum disorders (ASD) and may stem from a faulty arousal system that compromises the ability to regulate an optimal response. To study neurophysiological correlates of the sensory modulation difficulties, we recorded magnetic field responses to clicks in 14 ASD and 15 typically developing (TD) children. We further analyzed the P100m, which is the most prominent component of the auditory magnetic field response in children and may reflect preattentive arousal processes. The P100m was rightward lateralized in the TD, but not in the ASD children, who showed a tendency toward P100m reduction in the right hemisphere (RH). The atypical P100m lateralization in the ASD subjects was associated with greater severity of sensory abnormalities assessed by Short Sensory Profile, as well as with auditory hypersensitivity during the first two years of life. The absence of right-hemispheric predominance of the P100m and a tendency for its right-hemispheric reduction in the ASD children suggests disturbance of the RH ascending reticular brainstem pathways and/or their thalamic and cortical projections, which in turn may contribute to abnormal arousal and attention. The correlation of sensory abnormalities with atypical, more leftward, P100m lateralization suggests that reduced preattentive processing in the right hemisphere and/or its shift to the left hemisphere may contribute to abnormal sensory behavior in ASD

    Cardiac neural discharge preceding sudden death: efferent, afferent or both?

    No full text

    Is reflex sympathetic dystrophy a valid concept?

    No full text

    Microwave Diagnostics Ahead: Saving Time and the Lives of Trauma and Stroke Patients

    No full text
    Microwave technology has the potential to revolutionize how, when, and what care can be delivered to patients with acute, life-threatening medical conditions. The prospects are that microwave systems can both improve diagnostic ability and accuracy and enable earlier diagnosis. Early diagnosis is a key factor in acute situations, especially when breathing and circulation are affected. Conventional imaging modalities used for diagnostics, such as magnetic resonance imaging (MRI) and X-ray computed tomography (CT), are powerful but normally available only at hospitals
    • …
    corecore