37 research outputs found

    Study on the leaching of phthalates from polyethylene terephthalate bottles into mineral water

    Get PDF
    Carbonated and non-carbonated mineral water samples bottled in 0.5-L, 1.5-L and 2.0-L polyethylene terephthalate (PET) containers belonging to three different water brands commercialized in Hungary were studied in order to determine their phthalate content by gas chromatography - mass spectrometry. Among the six investigated phthalates, diisobutyl phthalate, di-n-butyl-phthalate, benzyl-butyl phthalate and di(2-ethyl-hexyl) phthalate (DEHP) were determined in non-carbonated samples as follows: <3.0 ng L-1 - 0.2 μg L-1, <6.6 ng L-1 - 0.8 μg L-1, <6.0 ng L-1 - 0.1 μg L-1 and <16.0 ng L-1 - 1.7 μg L-1, respectively. Any of the above-mentioned phthalate esters could not be detected in carbonated mineral water samples. DEHP was the most abundant phthalate in the investigated samples. It could be detected after 44 days of storage at 22 ºC and its leaching was the most pronounced when samples were stored over 1200 days. Mineral water in PET bottles of 0.5 L had the highest phthalate concentrations compared to those obtained for waters of the identical brand bottled in 1.5-L or 2.0-L PET containers due to the higher surface/volume ratio. No clear trend could be established for phthalate leaching when water samples were kept at higher temperatures (max. 60 ºC) showing improper storage conditions. Phthalate determination by pyrolysis - gas chromatography/ mass spectroctrometric measurements in the plastic material as well as in the aqueous phase proved the importance of the quality of PET raw material used for the production of the pre-form (virgin vs. polymer containing recycled PET)

    Application of (V)UV/O3 technology for post-treatment of biologically treated wastewater: A pilot-scale study

    Get PDF
    For the first time, high energy VUV photons and generation of O3 by (V)UV lamps were applied together for removal of active pharmaceutical ingredients (APIs) from biologically treated wastewater (BTWW) in pilot-scale. The core of the pilot container unit was a photoreactor assembly consisting of six photoreactors, each containing a low-pressure Hg lamp (UV dose of 1.2 J/cm2 and 6.6 J/cm2 at 185 nm and 254 nm, respectively). BTWW was irradiated (4.75 min residence time) by (V)UV light in presence of in situ photochemically generated O3 from coolant air of the lamps. Experiments were conducted at the site of two wastewater treatment plants. Out of seven target APIs (namely carbamazepine, ciprofloxacin, clarithromycin, diclofenac, metoprolol, sitagliptin, and sulfamethoxazole), 80–100% removal was accomplished for five and 40–80% for two compounds. Two degradation products of carbamazepine were detected. Degradation products of other target compounds were not found. The applied O3 dose was 30–45 μg O3/mg dissolved organic carbon. Inactivation of up to log-4.8, log-4.5 and log-3.8 could be achieved for total coliform, Escherichia coli and Enterococcus faecalis, respectively. SOS Chromotest indicated no genotoxicity nor acute toxicity. Generation of neither NH4+, NO2− nor NO3− was observed during post-treatment. Electric energy per order values were calculated for the first time for (V)UV/O3 treatment in BTWW with a median value of 1.5 kWh/m3. This technology can be proposed for post-treatment of BTWWs of small settlements or livestock farms to degrade micropollutants before water discharge or for production of irrigation water. Further studies are essential in pilot-scale for other applications

    Review of low-cost sensors for indoor air quality: Features and applications

    Get PDF
    Humans spend the majority of their time indoors, where they are potentially exposed to hazardous pollutants. Within this context, over the past few years, there has been an upsurge of low-cost sensors (LCS) for the measurement of indoor air pollutants, motivated both by recent technological advances and by increased awareness of indoor air quality (IAQ) and its potential negative health impacts. Although not meeting the performance requirements for reference regulatory-equivalent monitoring indoors, LCS can provide informative measurements, offering an opportunity for high-resolution monitoring, emission source identification, exposure mitigation and managing IAQ and energy efficiency, among others. This article discusses the strengths and limitations that LCS offer for applications in the field of IAQ monitoring; it provides an overview of existing sensor technologies and gives recommendations for different indoor applications, considering their performance in the complex indoor environment and discussing future trends
    corecore