62 research outputs found

    Altered skeletal muscle (mitochondrial) properties in patients with mitochondrial DNA single deletion myopathy

    Get PDF
    BACKGROUND: Mitochondrial myopathy severely affects skeletal muscle structure and function resulting in defective oxidative phosphorylation. However, the major pathomechanisms and therewith effective treatment approaches remain elusive. Therefore, the aim of the present study was to investigate disease-related impairments in skeletal muscle properties in patients with mitochondrial myopathy. Accordingly, skeletal muscle biopsies were obtained from six patients with moleculargenetically diagnosed mitochondrial myopathy (one male and five females, 53 ± 9 years) and eight age- and gender-matched healthy controls (two males and six females, 58 ± 14 years) to determine mitochondrial respiratory capacity of complex I-V, mitochondrial volume density and fiber type distribution. RESULTS: Mitochondrial volume density (4.0 ± 0.5 vs. 5.1 ± 0.8 %) as well as respiratory capacity of complex I-V were lower (P < 0.05) in mitochondrial myopathy and associated with a higher (P < 0.001) proportion of type II fibers (65.2 ± 3.6 vs. 44.3 ± 5.9 %). Additionally, mitochondrial volume density and maximal oxidative phosphorylation capacity correlated positively (P < 0.05) to peak oxygen uptake. CONCLUSION: Mitochondrial myopathy leads to impaired mitochondrial quantity and quality and a shift towards a more glycolytic skeletal muscle phenotype

    Depletion of Rictor, an essential protein component of mTORC2, decreases male lifespan

    Get PDF
    Rapamycin, an inhibitor of the mechanistic target of rapamycin (mTOR), robustly extends the lifespan of model organisms including mice. We recently found that chronic treatment with rapamycin not only inhibits mTOR complex 1 (mTORC1), the canonical target of rapamycin, but also inhibits mTOR complex 2 (mTORC2) in vivo. While genetic evidence strongly suggests that inhibition of mTORC1 is sufficient to promote longevity, the impact of mTORC2 inhibition on mammalian longevity has not been assessed. RICTOR is a protein component of mTORC2 that is essential for its activity. We examined three different mouse models of Rictor loss: mice heterozygous for Rictor, mice lacking hepatic Rictor, and mice in which Rictor was inducibly deleted throughout the body in adult animals. Surprisingly, we find that depletion of RICTOR significantly decreases male, but not female, lifespan. While the mechanism by which RICTOR loss impairs male survival remains obscure, we find that the effect of RICTOR depletion on lifespan is independent of the role of hepatic mTORC2 in promoting glucose tolerance. Our results suggest that inhibition of mTORC2 signaling is detrimental to males, which may explain in part why interventions that decrease mTOR signaling show greater efficacy in females

    AMPK Phosphorylates and Inhibits SREBP Activity to Attenuate Hepatic Steatosis and Atherosclerosis in Diet-Induced Insulin-Resistant Mice

    Get PDF
    SummaryAMPK has emerged as a critical mechanism for salutary effects of polyphenols on lipid metabolic disorders in type 1 and type 2 diabetes. Here we demonstrate that AMPK interacts with and directly phosphorylates sterol regulatory element binding proteins (SREBP-1c and -2). Ser372 phosphorylation of SREBP-1c by AMPK is necessary for inhibition of proteolytic processing and transcriptional activity of SREBP-1c in response to polyphenols and metformin. AMPK stimulates Ser372 phosphorylation, suppresses SREBP-1c cleavage and nuclear translocation, and represses SREBP-1c target gene expression in hepatocytes exposed to high glucose, leading to reduced lipogenesis and lipid accumulation. Hepatic activation of AMPK by the synthetic polyphenol S17834 protects against hepatic steatosis, hyperlipidemia, and accelerated atherosclerosis in diet-induced insulin-resistant LDL receptor-deficient mice in part through phosphorylation of SREBP-1c Ser372 and suppression of SREBP-1c- and -2-dependent lipogenesis. AMPK-dependent phosphorylation of SREBP may offer therapeutic strategies to combat insulin resistance, dyslipidemia, and atherosclerosis

    When a calorie is not just a calorie : Diet quality and timing as mediators of metabolism and healthy aging

    Get PDF
    Funding Information: We thank Dr. Yih-Woei Fridell of the National Institute on Aging for organizing the meeting, as well as the NIA Division of Aging Biology for their support. We thank Dr. Gino Cortopassi for his edits and suggestions. The figures were created with BioRender.com. The Mihaylova lab is supported in part by the NIA (R00AG054760), Office of the NIH Director (DP2CA271361), the American Federation for Aging Research, the V Foundation, Pew Biomedical Scholar award, and startup funds from the Ohio State University. The Delibegovic lab is funded by the British Heart Foundation, Diabetes UK, BBSRC, NHS Grampian, Tenovus Scotland, and the Development Trust (University of Aberdeen). J.J.R. is supported by NIA PO1AG062817, R21AG064290, and R21AG071156. Research support for J.B. was from NIH National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grants R01DK127800, R01DK113011, R01DK090625, and R01DK050203 and the National Institute on Aging (NIA) grants R01AG065988 and P01AG011412, as well as the University of Chicago Diabetes Research and Training Center grant P30DK020595. This work was supported by NIH grants AG065992 to G.M. and AG068550 to G.M. and S.P. as well as UAB Startup funds 3123226 and 3123227 to G.M. R.S. is supported by NIH grants RF1AG043517, R01AG065985, R01DK123327, R56AG074568, and P01AG031782. Z.C. is primarily funded by The Welch Foundation (AU-1731-20190330) and NIH/NIA (R01AG065984, R56AG063746, RF1AG061901, and R56AG076144). A.C. is supported by NIA grant R01AG065993. W.W.J. is supported by the NIH (R01DC020031). M.S.-H. is supported by NIH R01 R35GM127049, R01 AG045842, and R21 NS122366. The research in the Dixit lab was supported in part by NIH grants AG031797, AG045712, P01AG051459, AR070811, AG076782, AG073969, and AG068863 and Cure Alzheimer's Fund (CAF). A.E.T.-M. is supported by the NIH/NIA (AG075059 and AG058630), NIAMS (AR071133), NHLBI (HL153460), pilot and feasibility funds from the NIDDK-funded UAB Nutrition Obesity Research Center (DK056336) and the NIA-funded UAB Nathan Shock Center (AG050886), and startup funds from UAB. J.A.M. is supported by the Intramural Research Program, NIA, NIH. The Panda lab is supported by the NIH (R01CA236352, R01CA258221, RF1AG068550, and P30CA014195), the Wu Tsai Human Performance Alliance, and the Joe and Clara Tsai Foundation. The Lamming lab is supported in part by the NIA (AG056771, AG062328, AG061635, and AG081482), the NIDDK (DK125859), startup funds from UW-Madison, and the U.S. Department of Veterans Affairs (I01-BX004031), and this work was supported using facilities and resources from the William S. Middleton Memorial Veterans Hospital. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. This work does not represent the views of the Department of Veterans Affairs or the United States Government. D.W.L. has received funding from, and is a scientific advisory board member of, Aeovian Pharmaceuticals, which seeks to develop novel, selective mTOR inhibitors for the treatment of various diseases. S.P. is the author of the books The Circadian Code and The Circadian Diabetes Code. Funding Information: We thank Dr. Yih-Woei Fridell of the National Institute on Aging for organizing the meeting, as well as the NIA Division of Aging Biology for their support. We thank Dr. Gino Cortopassi for his edits and suggestions. The figures were created with BioRender.com . The Mihaylova lab is supported in part by the NIA ( R00AG054760 ), Office of the NIH Director ( DP2CA271361 ), the American Federation for Aging Research , the V Foundation , Pew Biomedical Scholar award, and startup funds from the Ohio State University . The Delibegovic lab is funded by the British Heart Foundation , Diabetes UK , BBSRC , NHS Grampian , Tenovus Scotland , and the Development Trust ( University of Aberdeen ). J.J.R. is supported by NIA PO1AG062817 , R21AG064290 , and R21AG071156 . Research support for J.B. was from NIH National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grants R01DK127800 , R01DK113011 , R01DK090625 , and R01DK050203 and the National Institute on Aging (NIA) grants R01AG065988 and P01AG011412 , as well as the University of Chicago Diabetes Research and Training Center grant P30DK020595 . This work was supported by NIH grants AG065992 to G.M. and AG068550 to G.M. and S.P., as well as UAB Startup funds 3123226 and 3123227 to G.M. R.S. is supported by NIH grants RF1AG043517 , R01AG065985 , R01DK123327 , R56AG074568 , and P01AG031782 . Z.C. is primarily funded by The Welch Foundation ( AU-1731-20190330 ) and NIH/NIA ( R01AG065984 , R56AG063746 , RF1AG061901 , and R56AG076144 ). A.C. is supported by NIA grant R01AG065993 . W.W.J. is supported by the NIH ( R01DC020031 ). M.S.-H. is supported by NIH R01 R35GM127049 , R01 AG045842 , and R21 NS122366 . The research in the Dixit lab was supported in part by NIH grants AG031797 , AG045712 , P01AG051459 , AR070811 , AG076782 , AG073969 , and AG068863 and Cure Alzheimer's Fund (CAF). A.E.T.-M. is supported by the NIH/NIA ( AG075059 and AG058630 ), NIAMS ( AR071133 ), NHLBI ( HL153460 ), pilot and feasibility funds from the NIDDK -funded UAB Nutrition Obesity Research Center ( DK056336 ) and the NIA -funded UAB Nathan Shock Center ( AG050886 ), and startup funds from UAB . J.A.M. is supported by the Intramural Research Program, NIA, NIH . The Panda lab is supported by the NIH ( R01CA236352 , R01CA258221 , RF1AG068550 , and P30CA014195 ), the Wu Tsai Human Performance Alliance , and the Joe and Clara Tsai Foundation . The Lamming lab is supported in part by the NIA ( AG056771 , AG062328 , AG061635 , and AG081482 ), the NIDDK ( DK125859 ), startup funds from UW-Madison , and the U.S. Department of Veterans Affairs ( I01-BX004031 ), and this work was supported using facilities and resources from the William S. Middleton Memorial Veterans Hospital. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. This work does not represent the views of the Department of Veterans Affairs or the United States Government.Peer reviewedPostprin

    High fat diet enhances stemness and tumorigenicity of intestinal progenitors

    Get PDF
    Little is known about how pro-obesity diets regulate tissue stem and progenitor cell function. Here we find that high fat diet (HFD)-induced obesity augments the numbers and function of Lgr5+ intestinal stem-cells (ISCs) of the mammalian intestine. Mechanistically, HFD induces a robust peroxisome proliferator-activated receptor delta (PPAR-d) signature in intestinal stem and (non-ISC) progenitor cells, and pharmacologic activation of PPAR-d recapitulates the effects of a HFD on these cells. Like a HFD, ex vivo treatment of intestinal organoid cultures with fatty acid constituents of the HFD enhances the self-renewal potential of these organoid bodies in a PPAR-d dependent manner. Interestingly, HFD- and agonist-activated PPAR-d signaling endow organoid-initiating capacity to progenitors, and enforced PPAR-d signaling permits these progenitors to form in vivo tumors upon loss of the tumor suppressor Apc. These findings highlight how diet-modulated PPAR-d activation alters not only the function of intestinal stem and progenitor cells, but also their capacity to initiate tumors

    Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial

    Get PDF
    Background: Glucagon-like peptide 1 receptor agonists differ in chemical structure, duration of action, and in their effects on clinical outcomes. The cardiovascular effects of once-weekly albiglutide in type 2 diabetes are unknown. We aimed to determine the safety and efficacy of albiglutide in preventing cardiovascular death, myocardial infarction, or stroke. Methods: We did a double-blind, randomised, placebo-controlled trial in 610 sites across 28 countries. We randomly assigned patients aged 40 years and older with type 2 diabetes and cardiovascular disease (at a 1:1 ratio) to groups that either received a subcutaneous injection of albiglutide (30–50 mg, based on glycaemic response and tolerability) or of a matched volume of placebo once a week, in addition to their standard care. Investigators used an interactive voice or web response system to obtain treatment assignment, and patients and all study investigators were masked to their treatment allocation. We hypothesised that albiglutide would be non-inferior to placebo for the primary outcome of the first occurrence of cardiovascular death, myocardial infarction, or stroke, which was assessed in the intention-to-treat population. If non-inferiority was confirmed by an upper limit of the 95% CI for a hazard ratio of less than 1·30, closed testing for superiority was prespecified. This study is registered with ClinicalTrials.gov, number NCT02465515. Findings: Patients were screened between July 1, 2015, and Nov 24, 2016. 10 793 patients were screened and 9463 participants were enrolled and randomly assigned to groups: 4731 patients were assigned to receive albiglutide and 4732 patients to receive placebo. On Nov 8, 2017, it was determined that 611 primary endpoints and a median follow-up of at least 1·5 years had accrued, and participants returned for a final visit and discontinuation from study treatment; the last patient visit was on March 12, 2018. These 9463 patients, the intention-to-treat population, were evaluated for a median duration of 1·6 years and were assessed for the primary outcome. The primary composite outcome occurred in 338 (7%) of 4731 patients at an incidence rate of 4·6 events per 100 person-years in the albiglutide group and in 428 (9%) of 4732 patients at an incidence rate of 5·9 events per 100 person-years in the placebo group (hazard ratio 0·78, 95% CI 0·68–0·90), which indicated that albiglutide was superior to placebo (p&lt;0·0001 for non-inferiority; p=0·0006 for superiority). The incidence of acute pancreatitis (ten patients in the albiglutide group and seven patients in the placebo group), pancreatic cancer (six patients in the albiglutide group and five patients in the placebo group), medullary thyroid carcinoma (zero patients in both groups), and other serious adverse events did not differ between the two groups. There were three (&lt;1%) deaths in the placebo group that were assessed by investigators, who were masked to study drug assignment, to be treatment-related and two (&lt;1%) deaths in the albiglutide group. Interpretation: In patients with type 2 diabetes and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events. Evidence-based glucagon-like peptide 1 receptor agonists should therefore be considered as part of a comprehensive strategy to reduce the risk of cardiovascular events in patients with type 2 diabetes. Funding: GlaxoSmithKline

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Dietary and Metabolic Control of Stem Cell Function in Physiology and Cancer

    No full text
    Organismal diet has a profound impact on tissue homeostasis and health in mammals. Adult stem cells are a keystone of tissue homeostasis that alters tissue composition by balancing self-renewal and differentiation divisions. Because somatic stem cells may respond to shifts in organismal physiology to orchestrate tissue remodeling and some cancers are understood to arise from transformed stem cells, there is a likely possibility that organismal diet, stem cell function, and cancer initiation are interconnected. Here we will explore the emerging effects of diet on nutrient-sensing pathways active in mammalian tissue stem cells and their relevance to normal and cancerous growth.Damon Runyon Cancer Research Foundation (DRG-2146-13)Howard Hughes Medical Institute (Investigator)National Institutes of Health (U.S.) (NIH CA129105)National Institutes of Health (U.S.) (NIH CA103866 award)National Institutes of Health (U.S.) (NIH AI047389)David H. Koch Institute for Integrative Cancer Research at MIT (Koch Institute Frontier Research Program)Lawrence Ellison FoundationNational Institutes of Health (U.S.) (NIH/NIA AG045144, K99/ R00 Pathway to Independence Award)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (CSIBD grant from the NIDDK/NIH (DK043351)
    corecore