85 research outputs found

    Statistical distributions of trace metal concentrations in the northwestern Mediterranean atmospheric aerosol

    Get PDF
    The concentrations of 11 crustal and anthropogenic trace metals (Li, Al, V, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb) were measured from 2006 to 2008 in the atmospheric aerosol at a northwestern Mediterranean coast (station of Cap Ferrat, situated on the southeastern coast of France). Statistical models (lognormal, Weibull, and gamma) that best represented the trace metal distribution for this environment are described. The lognormal model was selected for the distributions of (in decreasing strength of the fit) Al, Co, Li, Zn, Mn, Cu, Pb, and Cd, i.e., metals that are introduced into the atmospheric aerosol by pulses inducing temporal variability in their concentrations. The gamma model was associated with Fe, i.e., metals that exhibit less inter-annual variability than the former trace metals. The third mode (Weibull) represented the distribution of the concentrations of V and Ni. The statistical approach presented in this study contributed to better define and constrain the distribution of the 11 trace metals of the atmospheric aerosol from the northwestern Mediterranean coast. In a close future, knowledge of these statistical distributions will allow using convolution models to separate their natural and anthropogenic contributions, therefore increasing our ability to study anthropogenic emissions of trace metals and their impact on the environmen

    The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea

    Get PDF
    Estimates of atmospheric inputs to the Mediterranean (MED) and some coastal areas are reviewed, and uncertainities in these estimates considered. Both the magnitude and the mineralogical composition of atmospheric dust inputs indicate that eolian deposition is an important (50%) or prevailing (>80%) contribution to sediments in the offshore waters of the entire Mediterranean (MED) basin. Model data for trace metals and nutrients indicate that the atmosphere delivers more than half the lead and nitrogen, one-third of total phosphorus, and 10% of the zinc entering the entire basin. Measured data in sub-basins, such as the north-western MED and northern Adriatic indicate an even greater proportion of atmospheric versus riverine inputs. When dissolved fluxes are compared (the form most likely to impinge on surface water biogeochemical cycles), the atmosphere is found to be 5 to 50 times more important than rivers for dissolved Zn and 15 to 30 times more important for Pb fluxes. Neglecting co-limitation by other nutrients, new production supported by atmospheric nitrogen deposition ranges from 2-4 g C m-2 yr-1, whereas atmospheric phosphorus deposition appears to support less than 1 g C m-2 yr-1. In spite of the apparently small contribution of atmospheric deposition to overall production in the basin it has been suggested that certain episodes of phytoplankton blooms are triggered by atmospheric deposition of N, P or Fe. Future studies are needed to clarify the extent and causal links between these episodic blooms and atmospheric/oceanographic forcing functions. A scientific program aimed at elucidating the possible biogeochemical effects of Saharan outbreaks in the MED through direct sampling of the ocean and atmosphere before and after such events is therefore highly recommended

    Mineralisation of atmospheric aerosol particles and further analysis of trace elements by inductively coupled plasma-optical emission spectrometry

    No full text
    Several protocols using different treatments (various mixtures of acids at different temperatures for mineralisation) or using several analysis instrumentations were tested with the aim to define the method allowing the analysis of some groups of elements. This study proposes a protocol of sample treatment and analysis permitting in a single batch the determination of 16 elements (Al, As, Ba, Cd, Co, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Ti, V and Zn) with different chemical features such as volatile or refractory trace elements. This method is specifically adapted to chemical matrices found in unpolluted to moderately polluted atmospheric aerosol samples. Aerosol samples were digested using a mixture aqua regia/hydrofluoric acid at 130 °C during 2 h, and were then analysed with specifically tuned inductively coupled plasma-optical emission spectrometry. • Reduction of costs: use of hot block, use of inductively coupled plasma-optical emission spectrometry (ICP-OES), easiness, reliability and adaptability to routine analysis • Digestion of up to 54 samples at the same time in 2 h and low amount of material required, only 10 mg is necessary. • Better accordance with Occupational Health and Safety requirements (reduced use of acids, in particular HF, no use of high-pressure Teflon bombs)

    The Mediterranean Sea in the Era of Global Ghange - Volume 2: 30 Years of Multidisciplinary Study of the Ligurian Sea

    No full text
    International audienceDue to its particular characteristics, the Mediterranean Sea is often viewed as a microcosm of the World Ocean. Its proportionally-reduced dimensions and peculiar hydrological circulation render it susceptible to environmental and climatic constraints, which are rapidly evolving. The Mediterranean is therefore an ideal site to examine, in order to better understand a number of key oceanographic phenomena. This is especially true of the Ligurian Sea where, due to its geology, oceanic conditions are found close to the coast.As such, 30 years ago, an offshore time-series site provided a fresh impetus to a long history of marine biology research, which has generated a very important body of data and knowledge. This is the first volume, in a two-volume series, that summarizes this research. Across these two books, the reader will find 13 chapters that examine the geology, physics, chemistry and biology of the Ligurian Sea − always with the goal of providing key elements of oceanography in a changing world
    corecore