78 research outputs found

    Ising t-J model close to half filling: A Monte Carlo study

    Full text link
    Within the recently proposed doped-carrier representation of the projected lattice electron operators we derive a full Ising version of the t-J model. This model possesses the global discrete Z_2 symmetry as a maximal spin symmetry of the Hamiltonian at any values of the coupling constants, t and J. In contrast, in the spin anisotropic limit of the t-J model, usually referred to as the t-J_z model, the global SU(2) invariance is fully restored at J_z=0, so that only the spin-spin interaction has in that model the true Ising form. We discuss a relationship between those two models and the standard isotropic t-J model. We show that the low-energy quasiparticles in all three models share the qualitatively similar properties at low doping and small values of J/t. The main advantage of the proposed Ising t-J model over the t-J_z one is that the former allows for the unbiased Monte Carlo calculations on large clusters of up to 10^3 sites. Within this model we discuss in detail the destruction of the antiferromagnetic order by doping as well as the interplay between the AF order and hole mobility. We also discuss the effect of the exchange interaction and that of the next nearest neighbour hoppings on the destruction of the AF order at finite doping. We show that the short-range AF order is observed in a wide range of temperatures and dopings, much beyond the boundaries of the AF phase. We explicitly demonstrate that the local no double occupancy constraint plays the dominant role in destroying the magnetic order at finite doping. Finally, a role of inhomogeneities is discussed.Comment: 24 pages, 10 figure

    PNM16 THE COSTS OF MULTIPLE SCLEROSIS—A CROSS-SECTIONAL PROSPECTIVE MULTICENTRE COST OF ILLNESS STUDY IN POLAND

    Get PDF

    Effective approach to the Nagaoka regime of the two dimensional t-J model

    Full text link
    We argue that the t-J model and the recently proposed Ising version of this model give the same physical picture of the Nagaoka regime for J/t << 1. In particular, both models are shown to give compatible results for a single Nagaoka polaron as well as for a Nagaoka bipolaron. When compared to the standard t-J or t-Jz models, the Ising version allows for a numerical analysis on much larger clusters by means of classical Monte Carlo simulations. Taking the advantage of this fact, we study the low doping regime of t-J model for J/t << 1 and show that the ground state exhibits phase separation into hole-rich ferromagnetic and hole-depleted antiferromagnetic regions. This picture holds true up to a threshold concentration of holes, \delta < \delta_t ~ 0.44 \sqrt{J/t}. Analytical calculations show that \delta_t=\sqrt{J/2\pi t}.Comment: 10 pages, 10 figures, revte

    Doped carrier formulation of the t-J model : Monte Carlo study of the anisotropic case

    Get PDF
    We derive a doped carrier representation of the t-J model Hamiltonian. Within this approach the t-J model is described in terms of holes hopping in a lattice of correlated spins, where holes are the carriers doped into the half-filled Mott insulator. This representation of the t{J Hamiltonian is very convenient for underdoped systems since close to half-filling it allows for a controlled treatment of the crucial constraint of no doubly occupied sites. When neglecting the transverse spin-spin interaction, the effective Hamiltonian can be investigated with classical Monte Carlo simulations. We discuss the results obtained for systems consisting of several hundred lattice sites

    Upper critical field for electrons in two-dimensional lattice

    Full text link
    We address a problem of the upper critical field in a lattice described by a two-dimensional tight-binding model with the on-site pairing. We develop a finite-system-approach which enables investigation of magnetic and superconducting properties of electrons on clusters, consisting of a few thousand sites. We discuss how the quasiparticle density of states changes with the applied external magnetic field and present the temperature dependence of the upper critical field. We also briefly discuss possible extension of the model to account for the properties of high-temperature superconductors.Comment: 4 pages, 3 postscript figures, revte

    Upward curvature of the upper critical field in the Boson--Fermion model

    Full text link
    We report on a non-conventional temperature behavior of the upper critical field (Hc2(T)H_{c2}(T)) which is found for the Boson-Fermion (BF) model. We show that the BF model properly reproduces two crucial features of the experimental data obtained for high-TcT_c superconductors: Hc2(T)H_{c2}(T) does not saturate at low temperatures and has an upward curvature. Moreover, the calculated upper critical field fits very well the experimental results. This agreement holds also for overdoped compounds, where a purely bosonic approach is not applicable.Comment: 4 pages, 3 figures, revte

    Strong interaction of correlated electrons with phonons: Exchange of phonon clouds by polarons

    Full text link
    We investigate the interaction of strongly correlated electrons with phonons in the frame of the Hubbard-Holstein model. The electron-phonon interaction is considered to be strong and is an important parameter of the model besides the Coulomb repulsion of electrons and band filling. This interaction with the nondispersive optical phonons has been transformed to the problem of mobile polarons by using the canonical transformation of Lang and Firsov. We discuss in particular the case for which the on-site Coulomb repulsion is exactly cancelled by the phonon-mediated attractive interaction and suggest that polarons exchanging phonon clouds can lead to polaron pairing and superconductivity. It is then the frequency of the collective mode of phonon clouds being larger than the bare frequency, which determines the superconducting transition temperature.Comment: 23 pages, Submitted to Phys. Rev.

    Upper critical field Hc2H_{c2} calculations for the high critical temperature superconductors considering inhomogeneities

    Full text link
    We perform calculations to obtain the Hc2H_{c2} curve of high temperature superconductors (HTSC). We consider explicitly the fact that the HTSC possess intrinsic inhomogeneities by taking into account a non uniform charge density ρ(r)\rho(r). The transition to a coherent superconducting phase at a critical temperature TcT_c corresponds to a percolation threshold among different superconducting regions, each one characterized by a given Tc(ρ(r))T_c(\rho(r)). Within this model we calculate the upper critical field Hc2H_{c2} by means of an average linearized Ginzburg-Landau (GL) equation to take into account the distribution of local superconducting temperatures Tc(ρ(r))T_c(\rho(r)). This approach explains some of the anomalies associated with Hc2H_{c2} and why several properties like the Meissner and Nernst effects are detected at temperatures much higher than TcT_c.Comment: Latex text, add reference

    Eliashberg-type equations for correlated superconductors

    Full text link
    The derivation of the Eliashberg -- type equations for a superconductor with strong correlations and electron--phonon interaction has been presented. The proper account of short range Coulomb interactions results in a strongly anisotropic equations. Possible symmetries of the order parameter include s, p and d wave. We found the carrier concentration dependence of the coupling constants corresponding to these symmetries. At low hole doping the d-wave component is the largest one.Comment: RevTeX, 18 pages, 5 ps figures added at the end of source file, to be published in Phys.Rev. B, contact: [email protected]

    Superdeformed and Triaxial States in Ca 42

    Get PDF
    Shape parameters of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in ^{42}Ca were determined from E2 matrix elements measured in the first low-energy Coulomb excitation experiment performed with AGATA. The picture of two coexisting structures is well reproduced by new state-of-the-art large-scale shell model and beyond-mean-field calculations. Experimental evidence for superdeformation of the band built on 0_{2}^{+} has been obtained and the role of triaxiality in the A∼40 mass region is discussed. Furthermore, the potential of Coulomb excitation as a tool to study superdeformation has been demonstrated for the first time
    corecore