15 research outputs found

    Mosquito and Drosophila entomobirnaviruses suppress dsRNA- and siRNA-induced RNAi

    Get PDF
    RNA interference (RNAi) is a crucial antiviral defense mechanism in insects, including the major mosquito species that transmit important human viruses. To counteract the potent antiviral RNAi pathway, insect viruses encode RNAi suppressors. However, whether mosquito-specific viruses suppress RNAi remains unclear. We therefore set out to study RNAi suppression by Culex Y virus (CYV), a mosquito-specific virus of the Birnaviridae family that was recently isolated from Culex pipiens mosquitoes. We found that the Culex RNAi machinery processes CYV double-stranded RNA (dsRNA) into viral small interfering RNAs (vsiRNAs). Furthermore, we show that RNAi is suppressed in CYV-infected cells and that the viral VP3 protein is responsible for RNAi antagonism. We demonstrate that VP3 can functionally replace B2, the well-characterized RNAi suppressor of Flock House virus. VP3 was found to bind long dsRNA as well as siRNAs and interfered with Dicer-2-mediated cleavage of long dsRNA into siRNAs. Slicing of target RNAs by pre-assembled RNA-induced silencing complexes was not affected by VP3. Finally, we show that the RNAi-suppressive activity of VP3 is conserved in Drosophila X virus, a birnavirus that persistently infects Drosophila cell cultures. Together, our data indicate that mosquito-specific viruses may encode RNAi antagonists to suppress antiviral RNAi

    Twenty-five new viruses associated with the drosophilidae (Diptera)

    Get PDF
    Drosophila melanogaster is an important laboratory model for studies of antiviral immunity in invertebrates, and Drosophila species provide a valuable system to study virus host range and host switching. Here, we use metagenomic RNA sequencing of about 1600 adult flies to discover 25 new RNA viruses associated with six different drosophilid hosts in the wild. We also provide a comprehensive listing of viruses previously reported from the Drosophilidae. The new viruses include Iflaviruses, Rhabdoviruses, Nodaviruses, and Reoviruses, and members of unclassified lineages distantly related to Negeviruses, Sobemoviruses, Poleroviruses, Flaviviridae, and Tombusviridae. Among these are close relatives of Drosophila X virus and Flock House virus, which we find in association with wild Drosophila immigrans. These two viruses are widely used in experimental studies but have not been previously reported to naturally infect Drosophila. Although we detect no new DNA viruses, in D. immigrans and Drosophila obscura, we identify sequences very closely related to Armadillidium vulgare iridescent virus (Invertebrate iridescent virus 31), bringing the total number of DNA viruses found in the Drosophilidae to three.This work was funded by a Wellcome Trust Research Career Development Fellowship (WT085064) to DJO. BL was supported by grants from the UK Natural Environment Research Council (NE/L004232/1) and the European Research Council (281668, Drosophila Infection). SHL was supported by a Natural Environment Research Council Doctoral Training Grant (NERC DG NE/J500021/1). Work in DJO’s laboratory is partly supported by a Wellcome Trust strategic award to the Centre for Immunity, Infection and Evolution (WT095831). The authors confirm that the funder had no influence over the study design, content of the article, or selection of this journal

    Influence of Conversion and Anastomotic Leakage on Survival in Rectal Cancer Surgery; Retrospective Cross-sectional Study

    Get PDF

    Viral suppression of antiviral RNAi in insects

    Get PDF
    Contains fulltext : 122940.pdf (publisher's version ) (Open Access)Radboud Universiteit Nijmegen, 10 januari 2014Promotor : Galama, J.M.D. Co-promotor : Rij, R.P. va

    Small Silencing RNAs: Piecing Together a Viral Genome.

    Get PDF
    Virus-derived small interfering RNAs (siRNAs) are the hallmark of RNAi-based antiviral immunity. Wu and colleagues demonstrate how viral genomes can be assembled from these small RNA sequences. Their results provide an approach for virus discovery as well as important insights into how these siRNAs mediate antiviral defense

    Defense and counterdefense in the RNAi-based antiviral immune system in insects

    No full text
    Item does not contain fulltextRNA interference (RNAi) is an important pathway to combat virus infections in insects and plants. Hallmarks of antiviral RNAi in these organisms are: (1) an increase in virus replication after inactivation of major actors in the RNAi pathway, (2) production of virus-derived small interfering RNAs (v-siRNAs), and (3) suppression of RNAi by dedicated viral proteins. In this chapter, we will review the mechanism of RNAi in insects, its function as an antiviral immune system, viral small RNA profiles, and viral counterdefense strategies. We will also consider alternative, inducible antiviral immune responses

    Identification of viral suppressors of RNAi by a reporter assay in Drosophila S2 cell culture

    No full text
    Item does not contain fulltextThe RNA interference (RNAi) pathway plays an important role in antiviral immunity in insects. To -counteract the RNAi-mediated immune response of their hosts, several insect viruses, such as Flock house virus, Drosophila C virus, and Cricket paralysis virus, encode potent viral suppressors of RNAi (VSRs). Because of the importance of RNAi in antiviral defense in insects, other insect viruses are likely to encode VSRs as well. In this chapter, we describe a detailed protocol for an RNAi reporter assay in Drosophila S2 cells for the identification of VSR activity

    Convergent evolution of argonaute-2 slicer antagonism in two distinct insect RNA viruses.

    Get PDF
    Contains fulltext : 110706.pdf (publisher's version ) (Open Access)RNA interference (RNAi) is a major antiviral pathway that shapes evolution of RNA viruses. We show here that Nora virus, a natural Drosophila pathogen, is both a target and suppressor of RNAi. We detected viral small RNAs with a signature of Dicer-2 dependent small interfering RNAs in Nora virus infected Drosophila. Furthermore, we demonstrate that the Nora virus VP1 protein contains RNAi suppressive activity in vitro and in vivo that enhances pathogenicity of recombinant Sindbis virus in an RNAi dependent manner. Nora virus VP1 and the viral suppressor of RNAi of Cricket paralysis virus (1A) antagonized Argonaute-2 (AGO2) Slicer activity of RNA induced silencing complexes pre-loaded with a methylated single-stranded guide strand. The convergent evolution of AGO2 suppression in two unrelated insect RNA viruses highlights the importance of AGO2 in antiviral defense.01 augustus 201

    Mosquito and Drosophila entomobirnaviruses suppress dsRNA- and siRNA-induced RNAi

    Get PDF
    Contains fulltext : 137475.pdf (publisher's version ) (Open Access)RNA interference (RNAi) is a crucial antiviral defense mechanism in insects, including the major mosquito species that transmit important human viruses. To counteract the potent antiviral RNAi pathway, insect viruses encode RNAi suppressors. However, whether mosquito-specific viruses suppress RNAi remains unclear. We therefore set out to study RNAi suppression by Culex Y virus (CYV), a mosquito-specific virus of the Birnaviridae family that was recently isolated from Culex pipiens mosquitoes. We found that the Culex RNAi machinery processes CYV double-stranded RNA (dsRNA) into viral small interfering RNAs (vsiRNAs). Furthermore, we show that RNAi is suppressed in CYV-infected cells and that the viral VP3 protein is responsible for RNAi antagonism. We demonstrate that VP3 can functionally replace B2, the well-characterized RNAi suppressor of Flock House virus. VP3 was found to bind long dsRNA as well as siRNAs and interfered with Dicer-2-mediated cleavage of long dsRNA into siRNAs. Slicing of target RNAs by pre-assembled RNA-induced silencing complexes was not affected by VP3. Finally, we show that the RNAi-suppressive activity of VP3 is conserved in Drosophila X virus, a birnavirus that persistently infects Drosophila cell cultures. Together, our data indicate that mosquito-specific viruses may encode RNAi antagonists to suppress antiviral RNAi
    corecore