240 research outputs found
Optical-pump terahertz-probe spectroscopy in high magnetic fields with kHz single-shot detection
We demonstrate optical pump/THz probe (OPTP) spectroscopy with a variable
external magnetic field (0-9 T) in which the time-dependent THz signal is
measured by echelon-based single-shot detection at a 1 kHz repetition rate. The
method reduces data acquisition times by more than an order of magnitude
compared to conventional electro-optic sampling using a scanning delay stage.
The approach illustrates the wide applicability of the single-shot measurement
approach to nonequilibrium systems that are studied through OPTP spectroscopy,
especially in cases where parameters such as magnetic field strength (B) or
other experimental parameters are varied. We demonstrate the capabilities of
our measurement by performing cyclotron resonance experiments in bulk silicon,
where we observe B-field dependent carrier relaxation and distinct relaxation
rates for different carrier types. We use a pair of economical linear array
detectors to measure 500 time points on each shot, offering equivalent
performance to camera-based detection with possibilities for higher repetition
rates
Does acute passive stretching increase muscle length in children with cerebral palsy?
This article has been made available through the Brunel Open Access Publishing Fund. Copyright @ The Authors. This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and
reproduction in anymedium, provided the original author(s) and the source are credited.Background: Children with spastic cerebral palsy experience increased muscle stiffness and reduced muscle length, which may prevent elongation of the muscle during stretch. Stretching performed either by the clinician, or children themselves is used as a treatment modality to increase/maintain joint range of motion. It is not clear whether the associated increases in muscle–tendon unit length are due to increases in muscle or tendon length. The purpose was to determine whether alterations in ankle range of motion in response to acute stretching were accompanied by increases in muscle length, and whether any effects would be dependent upon stretch technique. Methods: Eight children (6–14 y) with cerebral palsy received a passive dorsiflexion stretch for 5 × 20 s to each leg, which was applied by a physiotherapist or the children themselves. Maximum dorsiflexion angle, medial gastrocnemius muscle and fascicle lengths, and Achilles tendon length were calculated at a reference angle of 10° plantarflexion, and at maximum dorsiflexion in the pre- and post-stretch trials. Findings: All variables were significantly greater during pre- and post-stretch trials compared to the resting angle, and were independent of stretch technique. There was an approximate 10° increase in maximum dorsiflexion post-stretch, and this was accounted for by elongation of both muscle (0.8 cm) and tendon (1.0 cm). Muscle fascicle length increased significantly (0.6 cm) from pre- to post-stretch. Interpretation: The results provide evidence that commonly used stretching techniques can increase overall muscle, and fascicle lengths immediately post-stretch in children with cerebral palsy
Recommended from our members
Multi-Layer Inkjet Printed Contacts to Si
Ag, Cu, and Ni metallizations were inkjet printed with near vacuum deposition quality. The approach developed can be easily extended to other conductors such as Pt, Pd, Au, etc. Thick highly conducting lines of Ag and Cu demonstrating good adhesion to glass, Si, and printed circuit board (PCB) have been printed at 100-200 deg C in air and N2 respectively. Ag grids were inkjet-printed on Si solar cells and fired through the silicon nitride AR layer at 850 deg C, resulting in 8% cells. Next generation inks, including an ink that etches silicon nitride, have now been developed. Multi-layer inkjet printing of the etching ink followed by Ag ink produced contacts under milder conditions and gave solar cells with efficiencies as high as 12%
Recommended from our members
Multi-Layer Inkjet Printed Contacts for Silicon Solar Cells: Preprint
Ag, Cu, and Ni metallizations were inkjet printed with near vacuum deposition quality. The approach developed can be easily extended to other conductors such as Pt, Pd, Au, etc. Thick highly conducting lines of Ag and Cu demonstrating good adhesion to glass, Si, and printed circuit board (PCB) have been printed at 100-200 C in air and N2 respectively. Ag grids were inkjet-printed on Si solar cells and fired through the silicon nitride AR layer at 850 C, resulting in 8% cells. Next generation inks, including an ink that etches silicon nitride, have now been developed. Multi-layer inkjet printing of the etching ink followed by Ag ink produced contacts under milder conditions and gave solar cells with efficiencies as high as 12%
The ‘Green Revolution’ dwarfing genes play a role in disease resistance in Triticum aestivum and Hordeum vulgare
The Green Revolution dwarfing genes, Rht-B1b and Rht-D1b, encode mutant forms of DELLA proteins and are present in most modern wheat varieties. DELLA proteins have been implicated in the response to biotic stress in the model plant, Arabidopsis thaliana. Using defined wheat Rht near-isogenic lines and barley Sln1 gain of function (GoF) and loss of function (LoF) lines, the role of DELLA in response to biotic stress was investigated in pathosystems representing contrasting trophic styles (biotrophic, hemibiotrophic, and necrotrophic). GoF mutant alleles in wheat and barley confer a resistance trade-off with increased susceptibility to biotrophic pathogens and increased resistance to necrotrophic pathogens whilst the converse was conferred by a LoF mutant allele. The polyploid nature of the wheat genome buffered the effect of single Rht GoF mutations relative to barley (diploid), particularly in respect of increased susceptibility to biotrophic pathogens. A role for DELLA in controlling cell death responses is proposed. Similar to Arabidopsis, a resistance trade-off to pathogens with contrasting pathogenic lifestyles has been identified in monocotyledonous cereal species. Appreciation of the pleiotropic role of DELLA in biotic stress responses in cereals has implications for plant breeding
Recommended from our members
Solution Deposition of Amorphous IZO Films by Ultrasonic Spray Pyrolysis: Preprint
This study investigates atmospheric-pressure solution deposition routes as an alternative to these traditional high-vacuum techniques
Recommended from our members
Solution Deposition of Amorphous IZO Films By Ultrasonic Spray Pyrolysis (Poster)
This study investigates atmospheric-pressure solution deposition routes as an alternative to these traditional high-vacuum techniques
Recommended from our members
Spray Deposition of High Quality CuInSe2 and CdTe Films: Preprint
A number of different ink and deposition approaches have been used for the deposition of CuInSe2 (CIS), Cu(In,Ga)Se2 (CIGS), and CdTe films. For CIS and CIGS, soluble precursors containing Cu, In, and Ga have been developed and used in two ways to produce CIS films. In the first, In-containing precursor films were sprayed on Mo-coated glass substrates and converted by rapid thermal processing (RTP) to In2Se3. Then a Cu-containing film was sprayed down on top of the In2Se3 and the stacked films were again thermally processed to give CIS. In the second approach, the Cu-, In-, and Ga-containing inks were combined in the proper ratio to produce a mixed Cu-In-Ga ink that was sprayed on substrates and thermally processed to give CIGS films directly. For CdTe deposition, ink consisting of CdTe nanoparticles dispersed in methanol was prepared and used to spray precursor films. Annealing these precursor films in the presence of CdCl2 produced large-grained CdTe films. The films were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). Optimized spray and processing conditions are crucial to obtain dense, crystalline films
Recommended from our members
Direct-Write Contacts: Metallization and Contact Formation; Preprint
Using direct-write approaches in photovoltaics for metallization and contact formation can significantly reduce the cost per watt of producing photovoltaic devices. Inks have been developed for various materials, such as Ag, Cu, Ni and Al, which can be used to inkjet print metallizations for various kinds of photovoltaic devices. Use of these inks results in metallization with resistivities close to those of bulk materials. By means of inkjet printing a metallization grid can be printed with better resolution, i.e. smaller lines, than screen-printing. Also inks have been developed to deposit transparent conductive oxide films by means of ultrasonic spraying
Synthesis, characterisation and photochemistry of PtIV pyridyl azido acetato complexes
PtII azido complexes [Pt(bpy)(N3)2] (1), [Pt(phen)(N3)2] (2) and trans-[Pt(N3)2(py)2] (3) incorporating the bidentate diimine ligands 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen) or the monodentate pyridine (py) respectively, have been synthesised from their chlorido precursors and characterised by X-ray crystallography; complex 3 shows significant deviation from square-planar geometry (N3–Pt–N3 angle 146.7°) as a result of steric congestion at the Pt centre. The novel PtIV complexes trans, cis-[Pt(bpy)(OAc)2(N3)2] (4), trans, cis-[Pt(phen)(OAc)2(N3)2] (5), trans, trans, trans-[Pt(OAc)2(N3)2(py)2] (6), were obtained from 1–3via oxidation with H2O2 in acetic acid followed by reaction of the intermediate with acetic anhydride. Complexes 4–6 exhibit interesting structural and photochemical properties that were studied by X-ray, NMR and UV-vis spectroscopy and TD-DFT (time-dependent density functional theory). These PtIV complexes exhibit greater absorption at longer wavelengths (ε = 9756 M−1 cm−1 at 315 nm for 4; ε = 796 M−1 cm−1 at 352 nm for 5; ε = 16900 M−1 cm−1 at 307 nm for 6, in aqueous solution) than previously reported PtIV azide complexes, due to the presence of aromatic amines, and 4–6 undergo photoactivation with both UVA (365 nm) and visible green light (514 nm). The UV-vis spectra of complexes 4–6 were calculated using TD-DFT; the nature of the transitions contributing to the UV-vis bands provide insight into the mechanism of production of the observed photoproducts. The UV-vis spectra of 1–3 were also simulated by computational methods and comparison between PtII and PtIV electronic and structural properties allowed further elucidation of the photochemistry of 4–6
- …