408 research outputs found

    Evaluasi Keragaan Tujuh Genotipe Cabai (Capsicum Annuum L.) di Lahan Gambut

    Full text link
    The objective of this research was to evaluate variability seven genotype Chili (Capsicum annuum L.) in peatlands and find genotype that have high yield. Research arranged in a randomized block design consisting of seven treatments (genotype C-5, C-111, C-120, C-159, C-159 x C-5, C-159 x C-111, C-159 x C-120) with three replications. Parameters measured were flowering date, harvesting date, plant height, height dichotomous, stem diameter, canopy width, fruit length, fruit diameter, weight per fruit, total weight per plant. The results showed that seven genotipe Chili planted variability in peatlands visible between genotype, especially in stem diameter, fruit length, fruit diameter, flowering date, weight per fruit and fruit weight per plant. Genotype C-5 which is a great Chili has the highest yield with weight per fruit 13,78 g and total weight per plant 407,02 g

    Quantum Principal Bundles and Corresponding Gauge Theories

    Full text link
    A generalization of classical gauge theory is presented, in the framework of a noncommutative-geometric formalism of quantum principal bundles over smooth manifolds. Quantum counterparts of classical gauge bundles, and classical gauge transformations, are introduced and investigated. A natural differential calculus on quantum gauge bundles is constructed and analyzed. Kinematical and dynamical properties of corresponding gauge theories are discussed.Comment: 28 pages, AMS-LaTe

    Experimental Study of the Effect of Hydrotreated Vegetable Oil and Oxymethylene Ethers on Main Spray and Combustion Characteristics under Engine Combustion Network Spray A Conditions

    Full text link
    [EN] Featured Application This work contributes to the understanding of the macroscopic characteristics of the spray as well as to the evolution of the combustion process for alternative fuels. All these fuels have been studied under the same operating conditions than diesel therefore the comparison can be made directly, leaving in evidence that some fuels can achieve a similar behavior to diesel in terms of auto ignition but avoiding one of the biggest disadvantages of diesel such as the soot formation. Moreover, the quantification of characteristic parameters such as ignition delay, liquid length, vapor penetration and flame lift-off length represent the most important data to adjust and subsequently validate the computational models that simulate the spray evolution and combustion development of these alternative fuels inside the combustion chamber. The stringent emission regulations have motivated the development of cleaner fuels as diesel surrogates. However, their different physical-chemical properties make the study of their behavior in compression ignition engines essential. In this sense, optical techniques are a very effective tool for determining the spray evolution and combustion characteristics occurring in the combustion chamber. In this work, quantitative parameters describing the evolution of diesel-like sprays such as liquid length, spray penetration, ignition delay, lift-off length and flame penetration as well as the soot formation were tested in a constant high pressure and high temperature installation using schlieren, OH* chemiluminescence and diffused back-illumination extinction imaging techniques. Boundary conditions such as rail pressure, chamber density and temperature were defined using guidelines from the Engine Combustion Network (ECN). Two paraffinic fuels (dodecane and a renewable hydrotreated vegetable oil (HVO)) and two oxygenated fuels (methylal identified as OME(1)and a blend of oxymethylene ethers, identified as OMEx) were tested and compared to a conventional diesel fuel used as reference. Results showed that paraffinic fuels and OME(x)sprays have similar behavior in terms of global combustion metrics. In the case of OME1, a shorter liquid length, but longer ignition delay time and flame lift-off length were observed. However, in terms of soot formation, a big difference between paraffinic and oxygenated fuels could be appreciated. While paraffinic fuels did not show any significant decrease of soot formation when compared to diesel fuel, soot formed by OME(1)and OME(x)was below the detection threshold in all tested conditions.This research has been partly funded by the European Union's Horizon 2020 Programme through the ENERXICO project, grant agreement no 828947, and from the Mexican Department of Energy, CONACYT-SENER Hidrocarburos grant agreement no B-S-69926 and by Universitat Politecnica de Valencia through the Programa de Ayudas de Investigacion y Desarrollo (PAID-01-18).Pastor, JV.; García-Oliver, JM.; Mico Reche, C.; Garcia-Carrero, AA.; Gómez, A. (2020). Experimental Study of the Effect of Hydrotreated Vegetable Oil and Oxymethylene Ethers on Main Spray and Combustion Characteristics under Engine Combustion Network Spray A Conditions. Applied Sciences. 10(16):1-20. https://doi.org/10.3390/app10165460S1201016Reşitoğlu, İ. A., Altinişik, K., & Keskin, A. (2014). The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technologies and Environmental Policy, 17(1), 15-27. doi:10.1007/s10098-014-0793-9Mohan, B., Yang, W., & Chou, S. kiang. (2013). Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review. Renewable and Sustainable Energy Reviews, 28, 664-676. doi:10.1016/j.rser.2013.08.051Leach, F., Kalghatgi, G., Stone, R., & Miles, P. (2020). The scope for improving the efficiency and environmental impact of internal combustion engines. Transportation Engineering, 1, 100005. doi:10.1016/j.treng.2020.100005Kim, H., Ge, J., & Choi, N. (2018). Application of Palm Oil Biodiesel Blends under Idle Operating Conditions in a Common-Rail Direct-Injection Diesel Engine. Applied Sciences, 8(12), 2665. doi:10.3390/app8122665Tziourtzioumis, D., & Stamatelos, A. (2017). Experimental Investigation of the Effect of Biodiesel Blends on a DI Diesel Engine’s Injection and Combustion. Energies, 10(7), 970. doi:10.3390/en10070970Merola, S. S., Tornatore, C., Iannuzzi, S. E., Marchitto, L., & Valentino, G. (2014). Combustion process investigation in a high speed diesel engine fuelled with n-butanol diesel blend by conventional methods and optical diagnostics. Renewable Energy, 64, 225-237. doi:10.1016/j.renene.2013.11.017Choi, K., Park, S., Roh, H. G., & Lee, C. S. (2019). Combustion and Emission Reduction Characteristics of GTL-Biodiesel Fuel in a Single-Cylinder Diesel Engine. Energies, 12(11), 2201. doi:10.3390/en12112201Dimitriadis, A., Seljak, T., Vihar, R., Žvar Baškovič, U., Dimaratos, A., Bezergianni, S., … Katrašnik, T. (2020). Improving PM-NOx trade-off with paraffinic fuels: A study towards diesel engine optimization with HVO. Fuel, 265, 116921. doi:10.1016/j.fuel.2019.116921Pastor, J. V., García, A., Micó, C., & Lewiski, F. (2020). An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines. Applied Energy, 260, 114238. doi:10.1016/j.apenergy.2019.114238Bergthorson, J. M., & Thomson, M. J. (2015). A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renewable and Sustainable Energy Reviews, 42, 1393-1417. doi:10.1016/j.rser.2014.10.034Yehliu, K., Boehman, A. L., & Armas, O. (2010). Emissions from different alternative diesel fuels operating with single and split fuel injection. Fuel, 89(2), 423-437. doi:10.1016/j.fuel.2009.08.025Gómez, A., Soriano, J. A., & Armas, O. (2016). Evaluation of sooting tendency of different oxygenated and paraffinic fuels blended with diesel fuel. Fuel, 184, 536-543. doi:10.1016/j.fuel.2016.07.049Benajes, J., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2020). Potential of using OMEx as substitute of diesel in the dual-fuel combustion mode to reduce the global CO2 emissions. Transportation Engineering, 1, 100001. doi:10.1016/j.treng.2020.01.001Burger, J., Siegert, M., Ströfer, E., & Hasse, H. (2010). Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel: Properties, synthesis and purification concepts. Fuel, 89(11), 3315-3319. doi:10.1016/j.fuel.2010.05.014Iannuzzi, S. E., Barro, C., Boulouchos, K., & Burger, J. (2017). POMDME-diesel blends: Evaluation of performance and exhaust emissions in a single cylinder heavy-duty diesel engine. Fuel, 203, 57-67. doi:10.1016/j.fuel.2017.04.089Omari, A., Heuser, B., & Pischinger, S. (2017). Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel, 209, 232-237. doi:10.1016/j.fuel.2017.07.107Bjørgen, K. O. P., Emberson, D. R., & Løvås, T. (2020). Combustion and soot characteristics of hydrotreated vegetable oil compression-ignited spray flames. Fuel, 266, 116942. doi:10.1016/j.fuel.2019.116942Marchitto, L., Merola, S. S., Tornatore, C., & Valentino, G. (2016). An Experimental Investigation of Alcohol/Diesel Fuel Blends on Combustion and Emissions in a Single-Cylinder Compression Ignition Engine. SAE Technical Paper Series. doi:10.4271/2016-01-0738Payri, R., Gimeno, J., Bardi, M., & Plazas, A. H. (2013). Study liquid length penetration results obtained with a direct acting piezo electric injector. Applied Energy, 106, 152-162. doi:10.1016/j.apenergy.2013.01.027Benajes, J., Payri, R., Bardi, M., & Martí-Aldaraví, P. (2013). Experimental characterization of diesel ignition and lift-off length using a single-hole ECN injector. Applied Thermal Engineering, 58(1-2), 554-563. doi:10.1016/j.applthermaleng.2013.04.044Xuan, T., Desantes, J. M., Pastor, J. V., & Garcia-Oliver, J. M. (2019). Soot temperature characterization of spray a flames by combined extinction and radiation methodology. Combustion and Flame, 204, 290-303. doi:10.1016/j.combustflame.2019.03.023Pastor, J. V., Payri, R., Garcia-Oliver, J. M., & Briceño, F. J. (2013). Schlieren Methodology for the Analysis of Transient Diesel Flame Evolution. SAE International Journal of Engines, 6(3), 1661-1676. doi:10.4271/2013-24-0041Pastor, J. V., García, A., Micó, C., & García-Carrero, A. A. (2020). Experimental study of influence of Liquefied Petroleum Gas addition in Hydrotreated Vegetable Oil fuel on ignition delay, flame lift off length and soot emission under diesel-like conditions. Fuel, 260, 116377. doi:10.1016/j.fuel.2019.116377Reyes, M., Tinaut, F. V., Giménez, B., & Pastor, J. V. (2018). Effect of hydrogen addition on the OH* and CH* chemiluminescence emissions of premixed combustion of methane-air mixtures. International Journal of Hydrogen Energy, 43(42), 19778-19791. doi:10.1016/j.ijhydene.2018.09.005Xuan, T., Pastor, J. V., García-Oliver, J. M., García, A., He, Z., Wang, Q., & Reyes, M. (2019). In-flame soot quantification of diesel sprays under sooting/non-sooting critical conditions in an optical engine. Applied Thermal Engineering, 149, 1-10. doi:10.1016/j.applthermaleng.2018.11.112Choi, M. Y., Mulholland, G. W., Hamins, A., & Kashiwagi, T. (1995). Comparisons of the soot volume fraction using gravimetric and light extinction techniques. Combustion and Flame, 102(1-2), 161-169. doi:10.1016/0010-2180(94)00282-wLi, D., He, Z., Xuan, T., Zhong, W., Cao, J., Wang, Q., & Wang, P. (2017). Simultaneous capture of liquid length of spray and flame lift-off length for second-generation biodiesel/diesel blended fuel in a constant volume combustion chamber. Fuel, 189, 260-269. doi:10.1016/j.fuel.2016.10.058Lequien, G., Berrocal, E., Gallo, Y., Themudo e Mello, A., Andersson, O., & Johansson, B. (2013). Effect of Jet-Jet Interactions on the Liquid Fuel Penetration in an Optical Heavy-Duty DI Diesel Engine. SAE Technical Paper Series. doi:10.4271/2013-01-1615Kook, S., & Pickett, L. M. (2012). Liquid length and vapor penetration of conventional, Fischer–Tropsch, coal-derived, and surrogate fuel sprays at high-temperature and high-pressure ambient conditions. Fuel, 93, 539-548. doi:10.1016/j.fuel.2011.10.004Payri, R., Salvador, F. J., Manin, J., & Viera, A. (2016). Diesel ignition delay and lift-off length through different methodologies using a multi-hole injector. Applied Energy, 162, 541-550. doi:10.1016/j.apenergy.2015.10.118Pickett, L. M., & Siebers, D. L. (2005). Orifice Diameter Effects on Diesel Fuel Jet Flame Structure. Journal of Engineering for Gas Turbines and Power, 127(1), 187-196. doi:10.1115/1.1760525Pastor, J. V., García-Oliver, J. M., López, J. J., & Vera-Tudela, W. (2016). An experimental study of the effects of fuel properties on reactive spray evolution using Primary Reference Fuels. Fuel, 163, 260-270. doi:10.1016/j.fuel.2015.09.064Pickett, L. M., & Siebers, D. L. (2004). Non-Sooting, Low Flame Temperature Mixing-Controlled DI Diesel Combustion. SAE Technical Paper Series. doi:10.4271/2004-01-1399Aatola, H., Larmi, M., Sarjovaara, T., & Mikkonen, S. (2008). Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE International Journal of Engines, 1(1), 1251-1262. doi:10.4271/2008-01-2500Marinov, N. M., Pitz, W. J., Westbrook, C. K., Vincitore, A. M., Castaldi, M. J., Senkan, S. M., & Melius, C. F. (1998). Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed n-Butane Flame. Combustion and Flame, 114(1-2), 192-213. doi:10.1016/s0010-2180(97)00275-

    A novel accelerometry-based algorithm for the detection of step durations over short episodes of gait in healthy elderly.

    Get PDF
    Background: The assessment of short episodes of gait is clinically relevant and easily implemented, especially given limited space and time requirements. BFS (body-fixed-sensors) are small, lightweight and easy to wear sensors, which allow the assessment of gait at relative low cost and with low interference. Thus, the assessment with BFS of short episodes of gait, extracted from dailylife physical activity or measured in a standardised and supervised setting, may add value in the study of gait quality of the elderly. The aim of this study was to evaluate the accuracy of a novel algorithm based on acceleration signals recorded at different human locations (lower back and heels) for the detection of step durations over short episodes of gait in healthy elderly subjects.Methods: Twenty healthy elderly subjects (73.7 ± 7.9 years old) walked twice a distance of 5 m, wearing a BFS on the lower back, and on the outside of each heel. Moreover, an optoelectronic three-dimensional (3D) motion tracking system was used to detect step durations. A novel algorithm is presented for the detection of step durations from low-back and heel acceleration signals separately. The accuracy of the algorithm was assessed by comparing absolute differences in step duration between the three methods: step detection from the optoelectronic 3D motion tracking system, step detection from the application of the novel algorithm to low-back accelerations, and step detection from the application of the novel algorithm to heel accelerations.Results: The proposed algorithm successfully detected all the steps, without false positives and without false negatives. Absolute average differences in step duration within trials and across subjects were calculated for each comparison, between low-back accelerations and the optoelectronic system were on average 22.4 ± 7.6 ms (4.0 ± 1.3 % of average step duration), between heel accelerations and the optoelectronic system were on average 20.7 ± 11.8 ms (3.7 ± 1.9 %), and between low-back accelerations and heel accelerations were on average 27.8 ± 15.1 ms (4.9 ± 2.5 % of average step duration).Conclusions: This study showed that the presented novel algorithm detects step durations over short episodes of gait in healthy elderly subjects with acceptable accuracy from low-back and heel accelerations, which provides opportunities to extract a range of gait parameters from short episodes of gait

    A Potential Route to Reduce Ischemia/Reperfusion Injury in Organ Preservation

    Full text link
    The pathophysiological process of ischemia and reperfusion injury (IRI), an inevitable step in organ transplantation, causes important biochemical and structural changes that can result in serious organ damage. IRI is relevant for early graft dysfunction and graft survival. Today, in a global context of organ shortages, most organs come from extended criteria donors (ECDs), which are more sensitive to IRI. The main objective of organ preservation solutions is to protect against IRI through the application of specific, nonphysiological components, under conditions of no blood or oxygen, and then under conditions of metabolic reduction by hypothermia. The composition of hypothermic solutions includes osmotic and oncotic buffering components, and they are intracellular (rich in potassium) or extracellular (rich in sodium). However, above all, they all contain the same type of components intended to protect against IRI, such as glutathione, adenosine and allopurinol. These components have not changed for more than 30 years, even though our knowledge of IRI, and much of the relevant literature, questions their stability or efficacy. In addition, several pharmacological molecules have been the subjects of preclinical studies to optimize this protection. Among them, trimetazidine, tacrolimus and carvedilol have shown the most benefits. In fact, these drugs are already in clinical use, and it is a question of repositioning them for this novel use, without additional risk. This new strategy of including them would allow us to shift from cold storage solutions to cold preservation solutions including multitarget pharmacological components, offering protection against IRI and thus protecting today's more vulnerable organs

    Bose--Einstein Condensation in the Large Deviations Regime with Applications to Information System Models

    Full text link
    We study the large deviations behavior of systems that admit a certain form of a product distribution, which is frequently encountered both in Physics and in various information system models. First, to fix ideas, we demonstrate a simple calculation of the large deviations rate function for a single constraint (event). Under certain conditions, the behavior of this function is shown to exhibit an analogue of Bose--Einstein condensation (BEC). More interestingly, we also study the large deviations rate function associated with two constraints (and the extension to any number of constraints is conceptually straightforward). The phase diagram of this rate function is shown to exhibit as many as seven phases, and it suggests a two--dimensional generalization of the notion of BEC (or more generally, a multi--dimensional BEC). While the results are illustrated for a simple model, the underlying principles are actually rather general. We also discuss several applications and implications pertaining to information system models

    Technology for monitoring everyday prosthesis use: a systematic review

    Get PDF
    BACKGROUND Understanding how prostheses are used in everyday life is central to the design, provision and evaluation of prosthetic devices and associated services. This paper reviews the scientific literature on methodologies and technologies that have been used to assess the daily use of both upper- and lower-limb prostheses. It discusses the types of studies that have been undertaken, the technologies used to monitor physical activity, the benefits of monitoring daily living and the barriers to long-term monitoring. METHODS A systematic literature search was conducted in PubMed, Web of Science, Scopus, CINAHL and EMBASE of studies that monitored the activity of prosthesis-users during daily-living. RESULTS 60 lower-limb studies and 9 upper-limb studies were identified for inclusion in the review. The first studies in the lower-limb field date from the 1990s and the number has increased steadily since the early 2000s. In contrast, the studies in the upper-limb field have only begun to emerge over the past few years. The early lower-limb studies focused on the development or validation of actimeters, algorithms and/or scores for activity classification. However, most of the recent lower-limb studies used activity monitoring to compare prosthetic components. The lower-limb studies mainly used step-counts as their only measure of activity, focusing on the amount of activity, not the type and quality of movements. In comparison, the small number of upper-limb studies were fairly evenly spread between development of algorithms, comparison of everyday activity to clinical scores, and comparison of different prosthesis user populations. Most upper-limb papers reported the degree of symmetry in activity levels between the arm with the prosthesis and the intact arm. CONCLUSIONS Activity monitoring technology used in conjunction with clinical scores and user feedback, offers significant insights into how prostheses are used and whether they meet the user’s requirements. However, the cost, limited battery-life and lack of availability in many countries mean that using sensors to understand the daily use of prostheses and the types of activity being performed has not yet become a feasible standard clinical practice. This review provides recommendations for the research and clinical communities to advance this area for the benefit of prosthesis users

    Fluoxetine: a case history of its discovery and preclinical development

    Get PDF
    Introduction: Depression is a multifactorial mood disorder with a high prevalence worldwide. Until now, treatments for depression have focused on the inhibition of monoaminergic reuptake sites, which augment the bioavailability of monoamines in the CNS. Advances in drug discovery have widened the therapeutic options with the synthesis of so-called selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine. Areas covered: The aim of this case history is to describe and discuss the pharmacokinetic and pharmacodynamic profiles of fluoxetine, including its acute effects and the adaptive changes induced after long-term treatment. Furthermore, the authors review the effect of fluoxetine on neuroplasticity and adult neurogenesis. In addition, the article summarises the preclinical behavioural data available on fluoxetine’s effects on depressive-like behaviour, anxiety and cognition as well as its effects on other diseases. Finally, the article describes the seminal studies validating the antidepressant effects of fluoxetine. Expert opinion: Fluoxetine is the first selective SSRI that has a recognised clinical efficacy and safety profile. Since its discovery, other molecules that mimic its mechanism of action have been developed, commencing a new age in the treatment of depression. Fluoxetine has also demonstrated utility in the treatment of other disorders for which its prescription has now been approved

    Pro-/antiinflammatory dysregulation in early psychosis: Results from a 1-year follow-Up study

    Get PDF
    Background: Previous studies indicated a systemic deregulation of the pro-/antiinflammatory balance in subjects after 6 months of a first psychotic episode. This disruption was reexamined 12 months after diagnosis to identify potential risk/ protective factors and associations with symptom severity. Methods: Eighty-five subjects were followed during 12 months and the determination of the same pro-/antiinflammatory mediators was carried out in plasma and peripheral blood mononuclear cells. Multivariate logistic regression analyses were used to identify risk/protective factors. Multiple linear regression models were performed to detect the change of each biological marker during follow-up in relation to clinical characteristics and confounding factors. Results: This study suggests a more severe systemic pro-/antiinflammatory deregulation than in earlier pathological stages in first psychotic episode, because not only were intracellular components of the inflammatory response increased but also the majority of soluble elements. Nitrite plasma levels and cyclooxygenase-2 expression in peripheral blood mononuclear cells are reliable potential risk factors and 15d-prostaglandin-J2 plasma levels a protection biomarker. An interesting relationship exists between antipsychotic dose and the levels of prostaglandin-E2 (inverse) and 15d-prostaglandin-J2 (direct). An inverse relationship between the Global Assessment of Functioning scale and lipid peroxidation is also present. Conclusions: Summing up, pro-/antiinflammatory mediators can be used as risk/protection biomarkers. The inverse association between oxidative/nitrosative damage and the Global Assessment of Functioning scale, and the possibility that one of the targets of antipsychotics could be the restoration of the pro-/antiinflammatory balance support the use of antiinflammatory drugs as coadjuvant to antipsychotics
    • …
    corecore