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Abstract

Background: The assessment of short episodes of gait is clinically relevant and easily implemented, especially
given limited space and time requirements. BFS (body-fixed-sensors) are small, lightweight and easy to wear
sensors, which allow the assessment of gait at relative low cost and with low interference. Thus, the assessment
with BFS of short episodes of gait, extracted from dailylife physical activity or measured in a standardised and
supervised setting, may add value in the study of gait quality of the elderly. The aim of this study was to evaluate
the accuracy of a novel algorithm based on acceleration signals recorded at different human locations (lower back
and heels) for the detection of step durations over short episodes of gait in healthy elderly subjects.

Methods: Twenty healthy elderly subjects (73.7 ± 7.9 years old) walked twice a distance of 5 m, wearing a BFS on
the lower back, and on the outside of each heel. Moreover, an optoelectronic three-dimensional (3D) motion
tracking system was used to detect step durations. A novel algorithm is presented for the detection of step
durations from low-back and heel acceleration signals separately. The accuracy of the algorithm was assessed by
comparing absolute differences in step duration between the three methods: step detection from the optoelectronic
3D motion tracking system, step detection from the application of the novel algorithm to low-back accelerations, and
step detection from the application of the novel algorithm to heel accelerations.

Results: The proposed algorithm successfully detected all the steps, without false positives and without false negatives.
Absolute average differences in step duration within trials and across subjects were calculated for each comparison,
between low-back accelerations and the optoelectronic system were on average 22.4 ± 7.6 ms (4.0 ± 1.3 % of
average step duration), between heel accelerations and the optoelectronic system were on average 20.7 ± 11.8 ms (3.7
± 1.9 %), and between low-back accelerations and heel accelerations were on average 27.8 ± 15.1 ms (4.9 ± 2.5
% of average step duration).

Conclusions: This study showed that the presented novel algorithm detects step durations over short
episodes of gait in healthy elderly subjects with acceptable accuracy from low-back and heel accelerations, which
provides opportunities to extract a range of gait parameters from short episodes of gait.

Keywords: Analysis of short episodes of gait, Body-fixed-sensors, Accelerometers, Low-back accelerometry, Heel
accelerometry, Step duration detection, Healthy elderly
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Background
Gait laboratory equipment usually consists of a combin-
ation of force plates, pressure-sensitive foot switches and
an optical motion capture system. The assessment of hu-
man gait with such systems provides objective and quan-
titative measurements. Nonetheless, these systems also
present several important constraints, such as the high
cost of the equipment, the limited number of steps to
assess [1] (over ground walking) or an induced gait
speed (treadmill) [2], and the limited ecological validity,
i.e., the natural environment where the physical activity
of the subject normally takes place is not replicated,
which may affect the outcomes [3, 4].
As an alternative to laboratory equipment, body-fixed-

sensors (BFS) are small, lightweight, easily wearable and
highly transportable. In addition, limited interference
with activity is expected and low power is required [1],
which permits an ambulatory use of these sensors for
long-duration measurements (up to two consecutive
weeks [5]) at relative low cost, especially when using a
single sensor.
BFS might also be useful in simple supervised assess-

ment protocols, for example to analyse short episodes of
gait, which can easily be included in clinical assessment,
especially given its limited space and time requirements,
and given that physical limitations in some patients might
be an impediment to perform longer episodes [6, 7]. More-
over, older adults select gait strategies with different spatio-
temporal parameters for different distances, therefore, the
assessment of short episodes of gait has potential to provide
clinical information that differs from information based on
the assessment of long episodes of gait [8]. The relevance of
clinical assessment of short episodes of gait with BFS has
been supported in several studies [8–10]. For instance, a
study based on quantitative assessment of the 8 m gait test
with two gyroscopes placed at the level of L1-L3 supported
the ability to differentiate between fall-prone and healthy
elderly subjects [9]. Furthermore, it has been proven that
data from a single BFS worn during the assessment of the
Timed Up and Go test (rising from a chair, walking 3 m,
turning, walking back and sitting down on the chair) might
distinguish between different clinical subtypes of Parkin-
son’s Disease [10]. In addition, the assessment of short epi-
sodes of gait with BFS is well suited to study the initiation
of gait [11], which has been shown to be clinically relevant
in diseases such as Parkinson’s Disease [12, 13].
A relevant challenge in the assessment of spatio-

temporal and stability gait parameters using BFS is the
accurate and reliable detection of steps [14, 15], which is
related to the placement of the sensor [16, 17]. Particu-
larly, the heels seem to be an adequate location for the
placement of accelerometers to detect heel-strikes due
to the magnitude of the acquired acceleration signals
[18] and the proximity to the location where the ground

reaction force impacts [19]. From this perspective, the
placement on the lower back might not be the most
suitable location for step detection. However, low-back
accelerometry does permit the detection of gait events
[19–28] and the extraction of spatio-temporal gait pa-
rameters [16, 20, 25, 26, 28, 29]. In addition, due to its
proximity to the centre of mass, the acquired low-back
acceleration represents the overall human motion pat-
tern [17]. Additionally, trunk accelerometry permits the
assessment of fall risk [14, 30], trunk stability [31,
32] and balance control [33, 34], which combined with
step detection might be clinically relevant. However, a
step-based analysis is only valid if step cycles are de-
tected with sufficient accuracy [20].
Previous studies have identified gait events, using a

single BFS at the lumbar level [19–23, 25, 28], or two BFS
on the heels [18, 35]. However, incorrect identification of
events and/or miss-detection of events were found when
applying peak-based methods [1, 18–23, 35, 36]. These
methods depend on specific properties of acceleration sig-
nals at specific instants of time [19]. Therefore, they might
be sensitive to fluctuations between steps (especially in
short episodes of gait) and between patients (due to differ-
ent walking patterns or different sensor alignment), which
leads to erroneous detection of events. On the other hand,
wavelet signals processing techniques, as previously pro-
posed [19, 23, 25, 26], require a relative large number of
complete periods [37], which are not available from short
episodes of gait. Moreover, the use of these techniques
does not always guarantee the detection of all gait events
[19, 25, 26].
In this study, we present a novel algorithm for detection

of step durations over short episodes of gait in healthy
elderly subjects. The proposed algorithm was separately
applied to acceleration signals recorded at different lo-
cations: lower back and heels. The method aims to
identify all periodic intervals from acceleration signals
which resemble in shape and magnitude to a predefined
template. This template is individualized and defined as
a combination of all cycles within each episode of gait.
Thus, the success of this method in step duration de-
tection does not depend on special features of acceler-
ation signals at specific events, but on the shape and
magnitude of acceleration signals along periods. Fur-
thermore, based on an individualized and averaged
template-match principle, low sensitivity to subjects
fluctuations is expected, allowing proper detection of
all cycles from different periodic acceleration signals of
short duration.
In addition to the accelerometers, an optoelectronic

3D motion tracking system was used to detect step du-
rations. Optoelectronic motion capture systems, while
not the gold standard, are often used given their highly
accurate 3D measurements of position and may provide
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an additional basis for accurate step detection [18, 38, 39].
The accuracy of the algorithm was evaluated by compar-
ing absolute differences in step duration between the esti-
mates obtained from the three methods: step detection
from the optoelectronic 3D motion tracking system, step
detection from the application of the algorithm to low-
back accelerations, and step detection from the application
of the algorithm to heel accelerations.

Methods
Subjects
This cross-sectional study was performed with a group
of 20 healthy older adults (9 female and 11 male, average
age 73.7 ± 7.9 years, average height 173.3 ± 8.2 cm, aver-
age leg length 105.3 ± 5.2 cm, average weight 77.7 ± 13.1
kg). The subjects, who were recruited from an ongoing co-
hort study concerning fall risk assessment in older adults
(FARAO), were community dwelling elderly adults. They
were recruited in Amsterdam (the Netherlands) and its
surroundings.
Once the protocol was approved by the local Ethics

committee (METc VUmc: 2010/290), the subjects were
selected from the FARAO cohort according to the fol-
lowing inclusion criteria: (a) age between 65 and 99
years; (b) mini mental state examination score of at least
19 points out of 30; (c) able to walk 20 m without any
walking aid and without any cardiovascular or respiratory
symptoms. Prior to the measurements in the laboratory at
the Department of Human Movement Sciences (Vrije
Universiteit Amsterdam), the selected subjects provided
informed written consent for the participation in the study
and for the publication of individual, anonymized data.

Protocol
The subjects, wearing their own shoes, walked a 5 m
long track demarcated by two lines on the floor. Two
paper templates of two adult-sized footprints were at-
tached to the floor indicating the end position of the
track. Two trials were performed at preferred speed.
At the beginning of each trial the subjects stood be-

hind the start line with the toes placed on the line. After
a verbal countdown the subjects started to walk the dis-
tance marked by the lines on the floor. The trial ended
when the subjects reached the end line, with their shoes
placed on the footprint templates. Afterwards the subject
stood still for 3 s before returning to the starting pos-
ition and repeating the trial.

Instrumentation and data acquisition
A BFS (DynaPort Hybrid, McRoberts; 87 mm x 45 mm x
14 mm, 65 g) was inserted in an elastic belt, placed around
the waist in such a way that the sensor was positioned at
the level of the lowest lumbar vertebra (L5). This location
is well accepted by older adults [40] and it is close to the

centre of mass of the whole human body [17, 41]. The sys-
tem includes a triaxial accelerometer and a triaxial gyro-
scope storing data at a sampling rate of 100 samples/s.
The accelerometer has a resolution of 1 mg and it is a DC
type sensor, therefore it is also sensitive to gravity. During
the standing phase, the sensor inside the belt was approxi-
mately parallel to the coronal plane.
The second system was composed of two BFS (DynaPort

MiniMod McRoberts; 82 mm x 50 mm x 9 mm, 43 g),
attached to the lateral sides of both heels. These BFS
included a DC type triaxial accelerometer with a sample
rate of 100 samples/s and a resolution of 1 mg. Each sen-
sor was attached with tape to the lateral side of the shoe
(close to the heel).
The third system was an optoelectronic three-dimensional

(3D) motion tracking system, 3020 Optotrak, Northern
Digital Inc., Waterloo, Canada, consisting of three camera
arrays for the recording of the 3D position (error < 0.05
mm) of LED markers at a sample rate of 200 samples/s. The
LED markers were positioned as follows: three single
markers on the back side of both shoes (Fig. 1a) and two
clusters of three markers on the lower back (L5), placed on
a lightweight plate which was attached to the surface of the
DynaPort Hybrid (Fig. 1b).
Data acquisition was synchronized for all the collected

signals using an impulse, which was transferred to each
of the systems. In addition, a video camera was used to
record the measurements.

Step detection from low-back (L5) accelerometry
A novel algorithm was developed for the automatic detec-
tion of step durations from acceleration signals. The algo-
rithm is based on the acceleration in the anterior-
posterior (AP) direction. Firstly, it defines a template,
which represents a typical pattern of a step cycle acceler-
ation, and subsequently it searches for the periods of max-
imal match between the signal and the template. The raw
acceleration signal obtained from the accelerometers was
manually segmented from some samples before the first
heel-strike of the gait episode to some samples before
the foremost foot reached the end line. The result is

Fig. 1 a Location of the LED markers of the Optotrak system on one
of the heels. b Cluster of markers placed on a lightweight plate and
attached to the surface of the DynaPort Hybrid, McRoberts
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denoted as “Segmented signal”. Based on low-back
accelerometry and following the flowchart (Fig. 2), the
algorithm executes the subsequent operations:

1. Template length definition
In this block the length of the template signal was
defined using the “Segmented signal” as an input and
following these steps:
1.1. Obtain the unbiased autocorrelation signal of

the input with the function < xcov, unbiased >
from Matlab Signal Processing Toolbox 7.11.0 [29].

1.2. Extract the dominant frequency from the
unbiased autocorrelation signal (positive lags).

1.3. Calculate the inverse of the dominant frequency
and multiply it by the sampling frequency. The
Template Length (TL) is defined as the resulting
number of samples.

2. Template signal definition
In this block the “Template signal” is defined, using
TL and the “Segmented signal” as inputs.
2.1. Define a low limit on the “Segmented signal”

after 115 % TL samples from the start, and a
high limit 115 % TL samples before the end.

2.2. Find peaks in the “Segmented signal” between
the low and high limits, which are at least 40 %
TL samples from each other.

2.3. Define sections of the input signal around each
peak, starting 15 % TL samples before the
instant at which the peak is found (with the aim
to include the slope preceding the peak) and
ending 100 % TL samples after the instant at
which the peak is found.

2.4. Obtain new signals from the application of the
dynamic-time-warping technique (DTW) [42]
on each of the sections and their consecutive
ones. This technique optimally aligns the sections,
combining them in an average signal.

2.5. Repeat step 2.4 until a single new signal, named
“Template signal”, is obtained. The length of this
signal is TL samples. This signal is the average
of all the sections defined in step 2.3 (Fig. 3).

3. Resegmentation of signal
In this block a new segmentation of the raw
acceleration signal is performed using TL, the raw
acceleration signal, and the start and end sample
number of the “Segmented signal” as inputs.
3.1. Extend the segmentation of the “Segmented

signal” to the left with TL samples, and to the
right with twice TL samples from the original
raw acceleration signal. The resulting signal is
denoted as “Resegmented signal” (Fig. 3), the
output of this block.

4. Search for match between “Template signal” and
“Resegmented signal”
In this block the match between the “Template signal”
and the “Resegmented signal” is found. The aim is to
extract the periods from the “Resegmented signal” in
which the acceleration resembles the template in
magnitude and shape. This permits to evaluate the
periodicity of steps. The inputs of this block are
template length (TL), the “Template signal”, the
¨Segmented signal” and the “Resegmented signal”.
4.1. Calculate a signal based on the standard

deviation of the difference in amplitude between
the “Template signal” and a sliding window (with
TL samples) through the “Resegmented signal”.

4.2. Normalize the resulting signal. This signal,
denoted as “SD Difference signal”, has local
minima at the start of the intervals along which
the “Resegmented signal” and the “Template
signal” have the best match, and therefore are
more similar in shape and amplitude (Fig. 4a).

4.3. Calculate a signal based on the calculation of
correlation coefficients (using the function
< corrcoef > from Matlab Signal Processing
Toolbox 7.11.0) between the “Template signal”
and a sliding window through the “Resegmented
signal”.

Fig. 2 Flowchart that represents the operations executed by
the algorithm
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4.4. Multiply the resulting signal by the ratio of
ranges of the “Resegmented signal” and the
“Template signal” and normalize the result. This
signal, denoted as “Correlation signal”, has local
maxima at the start of the intervals along which
the “Resegmented signal” and the “Template
signal” have the best match, and therefore are
more similar in shape and amplitude (Fig. 4a).
Note that both the “SD Difference signal” and
the “Correlation signal” are TL samples shorter
than the “Resegmented signal”.

4.5. Calculate the ratio between the “Correlation
signal” and the “SD Difference signal” to obtain
a new signal, denoted as “Coefficient signal”
(Fig. 4b).

4.6. Select peaks in the “Coefficient signal” which are
found within the dimension of the “Segmented
signal” and are located at least a 60 % TL
samples distant to each other.

4.7. Shift forwards by 15 % TL samples the instants
at which the peaks were selected, in order to
define the instants that approximate heel-strike
events in time. The intervals defined between
the shifted peaks, named “Events”, allow step du-
rations to be calculated (Fig. 5a).

Step detection from heel accelerometry
Acceleration signals of both heels were synchronized
with low-back acceleration signals and segmented at the
same point. The algorithm applied to the heel accelera-
tions was similar to that of low-back accelerations.

However, since heel accelerations have a periodicity in
strides [18] instead of steps, the template represents a
typical pattern of a stride cycle acceleration and it is dif-
ferently defined. The following steps of the algorithm
are different for heel accelerometry.

1.3. The template length (TL) is defined as the resulting
number of samples between the first two peaks of
the low-pass filtered (cut-off frequency equivalent
to the double dominant frequency) normalized
unbiased autocorrelation signal which overcome a
threshold of 0.5.

2.3. Define sections of the input signal around each
peak, starting 5 % TL samples before the instant at
which the peak is found (instead of 15 %, as the
slope of the peaks is more steep and TL is about
twice long for heel accelerations compared to low-
back accelerations) and ending 100 % TL samples
after the instant at which the peak is found.

In the case of heel accelerometry, the intervals defined
between the shifted peaks (5 % TL samples), named
“Events”, permit stride durations to be calculated. Thus,
left and right stride durations are detected from their re-
spective acceleration signals, and these are combined to
obtain step durations (Fig. 5b).

Step detection from Optotrak data
Heel and low-back acceleration signals were sampled at
100 samples/s, whereas Optotrak signals were sampled
at 200 samples/s. In order to obtain the same sample
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Fig. 3 “Resegmented signal”, “Segmented signal” and “Template signal” with a sampling rate of 100 samples/s. Typical example of an AP acceleration
signal collected at the lower back and segmented from shortly before the first heel-strike of the gait episode until shortly before the foremost foot
reached the end of the trial (“Segmented signal”, blue). New segmentation of the raw AP acceleration signal, which contains three sections with
a number of samples equivalent to the template length, one section prior to the start marker of the initial segmentation, and two sections after the
end marker of the initial segmentation (“Resegmented signal”, green). “Template signal” (black) is the average of all the sections defined in step 2.3
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rate between the three systems, Optotrak signals were
resampled to 100 samples/. In addition, Optotrak signals
were synchronized with acceleration signals and seg-
mented at the same point. The detection of heel-strike
events from the Optotrak system was influenced by the
visibility of the LED markers. These markers were not con-
tinuously visible, therefore, the visibility of Optotrak signals
was evaluated within intervals of 40 samples around the in-
stants of the “Events” detected from heel accelerations. The
visibility of Optotrak signals within each interval was evalu-
ated for all LED markers. From the markers placed on the
same area (right heel, left heel and lower back), the one
which had the largest number of complete visible intervals
in the whole gait episode was selected. Heel-strike events
were estimated as the instants when the distance in

anterior-posterior direction was maximal between the se-
lected heel and low-back markers [38].

Comparison between different systems
Step durations were calculated as the intervals between
the “Events” obtained with each method. The compari-
son was based on the calculation of absolute differences
(in milliseconds) in step duration between methods for
every step. However, in the case of Optotrak, 8.9 % of
the heel-strike events were missed due to the lack of
continuous visibility of the selected LED marker along
the defined intervals. As a consequence, the respective
heel-strike events were not included in the calculation of
step durations, and instead, a stride duration was calcu-
lated and compared.
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Fig. 4 a Typical example of a “SD Difference signal” (blue) and a “Correlation signal” (green) with a sampling rate of 100 samples/s. The “SD
Difference signal” was obtained from the standard deviation of the difference in amplitude between the “Template signal” and a sliding window
(with a number of samples equivalent to the template length) through the “Resegmented signal”. This signal has lower values at the start of the
intervals along which the “Resegmented signal” and the “Template signal” are more similar in shape and amplitude. “Correlation signal” was obtained
from the calculation of correlation coefficients between the “Template signal” and a sliding window through the “Resegmented signal”, being
multiplied by the ratio of ranges of the “Resegmented signal” and the “Template signal”. The resulting signal has higher values at the start of the
intervals along which the “Resegmented signal” and the “Template signal” are more similar in shape and amplitude. b “Coefficient signal” (blue) and
“Selected peaks” (red squares) with a sampling rate of 100 samples/s. The normalized ratio signal between the “Correlation signal” and the “SD
Difference signal” permitted to obtain the “Coefficient signal”. “Selected peaks” are the peaks from the “Coefficient signal” which are found within the
dimension of the “Segmented signal” and are located at a distance of at least a 60 % TL (template length) samples from each other
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Absolute differences in step duration and/or stride
duration (in the cases of missed heel-strike events) be-
tween each pair of methods were calculated and aver-
aged across all the steps of both trials, for all the

subjects. Shapiro-Wilk tests were applied to check the
normal distribution of these differences. In case of a nor-
mal distribution, differences were compared with a
paired t-test. In case of a non-normal distribution, a
Wilcoxon Signed Rank test was used. Furthermore, in-
terclass correlation (ICC) were used to assess corres-
pondence between methods. Significance level was set
at α = 0.05.

Results
A Shapiro-Wilk’s test showed that absolute differences be-
tween methods did not deviate from normal distribution for
absolute differences in step duration between low-back
accelerometry and Optotrak (p = 0.97) and between low-
back accelerometry and heel accelerometry (p = 0.50). How-
ever, when comparing estimates from heel accelerometry
versus Optotrak, absolute differences were not normally dis-
tributed (p = 0.01), with the presence of two outliers (Fig. 6).
The number of steps performed by the subjects were

counted from video recordings, which confirmed that the
algorithm applied to both low-back and heel accelerations
detected an equal number of steps, without false positives
and without false negatives.
Step duration estimates calculated from low-back ac-

celerations were compared with estimates from Optotrak
data. Absolute differences within episodes and across
subjects ranged between 7.5 and 39.2 ms. The ICC of
step durations over the two methods was 0.91. The average
absolute difference was 22.4 ± 7.6 ms, which is 4.0 ± 1.3 %
of the average step duration calculated with both systems
(Fig. 6). Estimates calculated from heel accelerations were
compared with estimates from Optotrak data. Absolute
differences within episodes and across subjects ranged
between 6.7 and 51.5 ms. The ICC of step durations
over the two methods was 0.91. The average absolute
difference was 20.7 ± 11.8 ms, which is 3.7 ± 1.9 % of
the average step duration measured with both systems
(Fig. 6). Estimates calculated from low-back accelerations
were compared with estimates from heel accelerations.
Absolute differences within episodes and across subjects
ranged between 4.0 and 61.4 ms. The ICC of step dura-
tions over the two methods was 0.88. The average absolute
difference was 27.8 ± 15.1 ms, which is 4.9 ± 2.5 % of the
average step duration measured with both systems (Fig. 6).
The ICC of step durations across the three methods

was 0.90. Differences between estimates from heel accel-
erations and Optotrak, which yielded the lowest average
value, were not statistically significant different from dif-
ferences between estimates from low-back accelerations
and Optotrak (p = 0.46), although they were statistically
significant different from differences between estimates
from heel and low-back accelerations (p = 0.02). Differences
between estimates from low-back and heel accelerations
yielded the highest average absolute value, and these
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Fig. 5 a. Low-Back acceleration signal (with a sampling rate of 100
samples/s) and detected events. Typical example of a segmented AP
acceleration signal collected at the lower back (blue), and the “Events”
(magenta) detected by the algorithm applied to low-back accelerome-
try. These “Events” were obtained from the shift by a 15 % TL samples
of the instants at which the peaks were found. The intervals between
“Events” permitted to calculate step durations. b. Heel acceleration
signals (with a sampling rate of 100 samples/s) and detected events.
Typical example of segmented AP acceleration signals collected at the
heels, left heel (red) and right heel (blue), and the respective “Events”
detected by the algorithm. These “Events” were obtained from the
shift by a 5 % TL samples of the instants at which the peaks were
found. The intervals between “Events” calculated for each of the
heel acceleration signal correspond to stride durations, and the
combination of the events detected from both heel accelerometry
permitted to obtain step durations
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were not statistically significant different from differ-
ences between estimates from low-back accelerations
and Optotrak (p = 0.16).

Discussion
In this study, we analysed the accuracy of a new algorithm
for the detection of step durations in healthy elderly sub-
jects during short episodes of gait. The proposed algorithm
was applied separately on low-back and heel accelerations,
and its accuracy was evaluated by comparing estimates
from three methods: step detection from an optoelectronic
3D motion tracking system (Optotrak), step detection from
the application of the algorithm on low-back accelerations,
and step detection from the application of the algorithm on
heel accelerations.

The lowest differences were obtained when comparing
estimates from heel accelerations and Optotrak (3.7 ± 1.9
%). These differences were significantly lower than differ-
ences between estimates from heel accelerations and low-
back accelerations (4.9 ± 2.5 %). However, these differences
were non-significantly lower than differences between esti-
mates from low-back accelerations and Optotrak (4.0 ± 1.3
%). Part of the differences between methods may be due to
the measurement at different parts of the body, the mis-
alignment between left/right sensors and markers, and the
use of different type of signals (position versus acceler-
ation). As a result, the three methods may detect different
gait events. Nonetheless, as long as the periodicity of the
detected events is the same, the duration of steps should be
comparable between methods.

10

20

30

40

50

60

LB vs OP HE vs OP LB vs HE

Step duration differences between methods

S
te

p 
du

ra
tio

n 
di

ff
er

en
ce

s 
[m

s]

Methods of comparison

Upper / Lower Adjacent

25% ~ 75% Quartiles

Median
Mean

Outliers

1

2

3

4

5

6

7

8

9

10

LB vs OP HE vs OP LB vs HE

Step duration differences between methods

P
er

ce
nt

ag
e 

of
 d

iff
er

en
ce

s 
%

Methods of comparison

Upper / Lower Adjacent

25% ~ 75% Quartiles

Median
Mean

Outliers

Fig. 6 Average absolute differences in step duration within trials and for each subject are presented for each pair of compared methods with a
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Gait cycles are within inertial data reproduced as re-
peating patterns [16]. Based on this principle, the pro-
posed algorithm searches for the periods of maximal
match between signals and an individualized and averaged
template, which represents a typical acceleration pattern
of a step cycle (in case of low-back acceleration) or a stride
cycle (in case of heel acceleration). Likewise, there are po-
tential applications of the proposed algorithm to other
periodic signals, considering the proper definition of a
template that will represent the typical pattern of a period
of interest.
The magnitude and shape of input signals is related

to the location of the sensor [16, 17]. In this regard,
the heels seem to be the most adequate location of the
accelerometers to detect heel-strikes, since the peaks
are steeper. However, the placement of accelerometers
on the heels has some disadvantages in clinical practice as
two sensors are required for the calculation of step dura-
tions, with both sensors being attached to the shoes. Self-
attachment of the sensors on the shoes might be difficult
for some subjects. Furthermore, the rigidity of fixation and
signal features might be affected by the material and shape
of the shoes. In contrast, at the waist, a single sensor can
easily be attached with minimal discomfort. In our experi-
ence, a loose attachment of the sensors to the shoes can
cause vibration and displacement of the sensors. Conse-
quently, multiple peaks can occur in the acceleration sig-
nal around heel-strike, which may be the reason for some
of the differences between the estimates from heel acceler-
ations and Optotrak data, as well as between heel and
low-back acceleration signals. In the case of low-back ac-
celeration, the sensor is attached symmetrically on the
body in the frontal plane, thus a single sensor can be used
to detect steps of both legs. Conversely, for heel acceler-
ometers stride durations are obtained separately for each
leg, and step durations are calculated between heel strikes,
alternating between legs and thus between sensors. Conse-
quently, a slight misalignment of the sensor from the right
to the left heel, or a change in position of the sensor dur-
ing the gait episode may influence the detection of step
durations. Moreover, a different stride cycle template
is defined for each of the heel acceleration signals,
potentially affecting symmetry when calculating steps.
Hence, the evaluation of stride durations instead of
step durations might be more consistent when com-
paring estimates from low-back and heel accelera-
tions. We evaluated this in a post-hoc comparison
and found that average absolute differences in stride
duration between estimates from low-back accelera-
tions and heel accelerations were on average 19.0 ±
10.6 ms (3.4 ± 1.6 % of average step duration, ICC =
0.98), which is indeed substantially lower (p = 0.04)
than the comparison in step duration between these
methods.

A technical constraint of this study was the failure to
continuously track the Optotrak markers, which caused
disruption of visibility and precluded the continuous
analysis of the signals. As a consequence, 8.9 % of the
heel-strike events were not included for the calculation
of step durations, and instead, a stride duration was
calculated and compared for these cases. Nonetheless,
differences in step duration between estimates from
low-back accelerations and heel accelerations were not
statistically significant different from differences between
low-back accelerations and Optotrak. This indicates that
despite the reduced number of measured steps, and the
comparison of strides instead of steps, the loss of heel-
strike events did not have a large impact on accuracy.
In clinical practice, the use of a 3D motion recording

system is limited due to technical requirements [1]. Ac-
celerometers on the other hand are small, lightweight,
inexpensive, easy to wear, highly transportable, do not
require any stationary units, are easy to set up and use,
do not require professional operators and their use is
not physically constrained [1, 17]. Moreover, in the case
of low-back accelerometers, right and left steps can be
detected from data collected with a single sensor. However,
a main limitation of the present study may be the low
sample rate (100 sample/s) of the accelerometers, which
may have negatively affected our results. The temporal
resolution of the accelerometers was approximately half
of the three mean average absolute differences. Conse-
quently, results may improve with higher sample rates.
The acceleration pattern (from heel and low-back ac-
celerations) of the intervals around the first heel-strike
is different in shape and amplitude from the intervals
around the rest of the heel-strikes, especially in the
case of heel accelerations. As a result, in the majority
of cases the accuracy was lower for the detection of the
first heel-strike based on the proposed template-match
method. This lower accuracy in detecting the first event
has implications for the study of gait initiation, which
is relevant in the assessment of short episodes of gait.
When excluding the first detected event, differences be-
tween systems were lower than the original results in-
cluding the first event: 17.9 ms (3.2 %, p = 0.09)
comparing estimates from low-back accelerations and
Optotrak, 15.7 ms (2.8 %, p = 0.01) between heel accel-
erations and Optotrak, and 25.9 ms (4.6 %, p = 0.71)
between low-back and heel accelerations. However,
these differences were only significantly different in the
comparison between heel accelerometry and Optotrak.
Another limitation of this study was the exclusion of

the last two heel-strikes (last step) of the episode of gait.
Thiscfinal step is clinically interesting since it challenges
the maintenance of balance. However, in this study, the
last step corresponded to the positioning phase of the
shoes over the footprints, and since some subjects
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completely stopped before placing their feet over the
footprints, the last step could not be considered as part
of the continuous gait episode.
Other studies have reported promising results for step

detection based on gyroscope signals recorded on the
feet [43, 44], with smartphones [45, 46] and in combin-
ation with accelerometry signals on the lower back [47].
Moreover, angular velocity signals obtained from gyro-
scopes at the lower back have been used to differentiate
between left and right events [23, 25], to estimate sensor
orientation in combination to accelerometry and to ob-
tain step length [26]. In this study, we did not analyse
angular velocity signals obtained with gyroscopes, how-
ever, this can be the focus of future work.
To our knowledge, there is limited published work

related to gait event detection from acceleration signals
recorded at the lower back or at the heels over straight
gait episodes of short duration. Therefore, it is hard to
compare our results to previous literature under the
same conditions. An extensive comparison between per-
formances of algorithms in short gait within, as opposed
to between sensors, could be a target of future work.
Different studies have detected gait events from heel
accelerometry based on the detection of peaks in specific
regions of filtered signals [18, 35]. However, the validity
of the outcomes were not tested in one of the studies
[35]. The high accuracy reported in a second study was
obtained by performing the validation over gait episodes
of longer duration (12 times along a 10 m long path),
and thus with more steady gait patterns. In addition, a
younger cohort group was assessed (27 ± 2.6 years),
which might have resulted in a less variable and less
asymmetric gait than in healthy elderly subjects [18].
Other algorithms applied to low-back acceleration sig-
nals for step detection have been previously reported
[21, 25, 27, 28, 39, 48]. However, the accuracy was not
tested in some of them [27, 28], or only average step
durations were compared between systems rather than
absolute differences between systems [21]. Another
study [25] compared the detection of initial contact events
from acceleration data recorded on the lower back (L3)
with force platforms. Non-absolute differences with high
standard deviations (13.4 ± 35 ms) were found for the de-
tection of events. In both previously mentioned studies
[21, 25], longer (25 m) episodes of gait were assessed in
younger cohorts. The magnitude of the differences ob-
tained in our study is comparable to results found in a
previous study [19], which analysed step durations cal-
culated with different methods based on low-back ac-
celerations [20–23, 26], and reported an acceptable
accuracy of all of them for clinical use. However, the
conditions of the comparative study were different,
since the subjects walked a longer distance, while bare-
foot. Subjects likely walked with different acceleration

patterns than with shoes [49] (as in our study), and
with a more steady gait pattern. Moreover, in contrast
to other methods [19–22, 26], our algorithm performed
step detection without false positive and false negatives.
Taken together, our results suggest that the proposed
algorithm is adequate for assessing short gait episodes in
healthy elderly subjects with clinically sufficient accuracy.
Simple and short assessments have potential for inclusion

in clinical studies [7, 10, 13], particularly because physical
limitations in some patients might be an impediment
to perform longer protocols [6, 7]. Moreover, older adults
select gait strategies with different spatio-temporal pa-
rameters for different distances [8], and since they
predominantly perform short bouts of gait in daily-life
physical activity [50], the assessment of short episodes
of gait may provide clinical information that is differ-
ent [8] and more relevant than information based on
the assessment of long episodes of gait. Additionally,
the ability of the elderly to cover indoors distances,
which are limited by housing dimensions, is relevant
for their safety [51], independence at home and for their
daily-life physical activity [52]. Thus, the assessment with
BFS of short episodes of gait, extracted from daily-life
physical activity or measured in a standardised and super-
vised setting, may add value in the study of gait quality of
the elderly.
The detection of steps is a prerequisite for obtaining

spatio-temporal parameters such as cadence, step sym-
metry, gait variability, anticipatory postural adjustments
prior step initiation, duration of gait initiation, etc., which
might have clinical value for the differentiation of stages of
neurodegenerative diseases [13, 53–60]. Moreover, step -
by - step variability of low-back angular velocity and
acceleration might also provide preclinical and pro-
gression parameters of such diseases. Thus, if differ-
ences in step duration between clinical groups are
larger than 4 % on average, as it has been shown in
several studies, e.g., in Parkinson’s Disease [56], the
algorithm proposed in this study would be useful for
the analysis of parameters based on step detection
from heel and low-back accelerations.

Conclusions
The presented study was designed to evaluate the accur-
acy of a novel algorithm based on acceleration signals
recorded at different human locations (lower back and
heels) for the detection of step durations over short epi-
sodes of gait in healthy elderly subjects. The accuracy
was assessed by comparing absolute differences in step
duration between three methods: step detection from an
optoelectronic 3D motion tracking system, step detec-
tion from the application of the algorithm on low-back
accelerations, and step detection from the application of
the algorithm on heel accelerations.
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The proposed algorithm successfully detected all the
steps, without false positives and without false negatives.
Average absolute differences in step duration within tri-
als and across subjects were calculated for each pair of
methods. Differences between methods were on average
about 4 %.
From the findings we can conclude that using the pro-

posed algorithm step durations can be estimated with
acceptable accuracy by using one of the two methods;
placing a single accelerometer device at the lower back
of healthy elderly subjects during short episodes of gait,
or placing two accelerometers at the heels. This provides
opportunities for the extraction of parameters from short
episodes of gait, in both clinical settings and possibly in
non-supervised environments.
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