278 research outputs found
Local Anisotropy of Fluids using Minkowski Tensors
Statistics of the free volume available to individual particles have
previously been studied for simple and complex fluids, granular matter,
amorphous solids, and structural glasses. Minkowski tensors provide a set of
shape measures that are based on strong mathematical theorems and easily
computed for polygonal and polyhedral bodies such as free volume cells (Voronoi
cells). They characterize the local structure beyond the two-point correlation
function and are suitable to define indices of
local anisotropy. Here, we analyze the statistics of Minkowski tensors for
configurations of simple liquid models, including the ideal gas (Poisson point
process), the hard disks and hard spheres ensemble, and the Lennard-Jones
fluid. We show that Minkowski tensors provide a robust characterization of
local anisotropy, which ranges from for vapor
phases to for ordered solids. We find that for fluids,
local anisotropy decreases monotonously with increasing free volume and
randomness of particle positions. Furthermore, the local anisotropy indices
are sensitive to structural transitions in these simple
fluids, as has been previously shown in granular systems for the transition
from loose to jammed bead packs
Gel-Electrophoresis and Diffusion of Ring-Shaped DNA
A model for the motion of ring-shaped DNA in a gel is introduced and studied
by numerical simulations and a mean-field approximation. The ring motion is
mediated by finger-shaped loops (hernias) that move in an amoeba-like fashion
around the gel obstructions. This constitutes an extension of previous
reptation tube treatments. It is shown that tension is essential for describing
the dynamics in the presence of hernias. It is included in the model as long
range interactions over stretched DNA regions. The mobility of ring-shaped DNA
is found to saturate much as in the well-studied case of linear DNA.
Experiments in polymer gels, however, show that the mobility drops
exponentially with the DNA ring size. This is commonly attributed to
dangling-ends in the gel that can impale the ring. The predictions of the
present model are expected to apply to artificial 2D obstacle arrays (W.D.
Volkmuth, R.H. Austin, Nature 358,600 (1992)) which have no dangling-ends. In
the zero-field case an exact solution of the model steady-state is obtained,
and quantities such as the average ring size are calculated. An approximate
treatment of the ring dynamics is given, and the diffusion coefficient is
derived. The model is also discussed in the context of spontaneous symmetry
breaking in one dimension.Comment: 8 figures, LaTeX, Phys. Rev. E - in pres
Mechanism of Resistance Development in E. coli against TCAT, a Trimethoprim-Based Photoswitchable Antibiotic
During the last decades, a continuous rise of multi-drug resistant pathogens has threatened antibiotic efficacy. To tackle this key challenge, novel antimicrobial therapies are needed with increased specificity for the site of infection. Photopharmacology could enable such specificity by allowing for the control of antibiotic activity with light, as exemplified by trans/cis-tetra-ortho-chloroazobenzene-trimethoprim (TCAT) conjugates. Resistance development against the on (irradiated, TCATa) and off (thermally adapted, TCATd) states of TCAT were compared to that of trimethoprim (TMP) in Escherichia coli mutant strain CS1562. Genomics and transcriptomics were used to explore the acquired resistance. Although TCAT shows TMP-like dihydrofolate reductase (DHFR) inhibition in vitro, transcriptome analyses show different responses in acquired resistance. Resistance against TCATa (on) relies on the production of exopolysaccharides and overexpression of TolC. While resistance against TCATd (off) follows a slightly different gene expression profile, both indicate hampering the entrance of the molecule into the cell. Conversely, resistance against TMP is based on alterations in cell metabolism towards a more persister-like phenotype, as well as alteration of expression levels of enzymes involved in the folate biosynthesis. This study provides a deeper understanding of the development of new therapeutic strategies and the consequences on resistance development against photopharmacological drugs
Minkowski Tensors of Anisotropic Spatial Structure
This article describes the theoretical foundation of and explicit algorithms
for a novel approach to morphology and anisotropy analysis of complex spatial
structure using tensor-valued Minkowski functionals, the so-called Minkowski
tensors. Minkowski tensors are generalisations of the well-known scalar
Minkowski functionals and are explicitly sensitive to anisotropic aspects of
morphology, relevant for example for elastic moduli or permeability of
microstructured materials. Here we derive explicit linear-time algorithms to
compute these tensorial measures for three-dimensional shapes. These apply to
representations of any object that can be represented by a triangulation of its
bounding surface; their application is illustrated for the polyhedral Voronoi
cellular complexes of jammed sphere configurations, and for triangulations of a
biopolymer fibre network obtained by confocal microscopy. The article further
bridges the substantial notational and conceptual gap between the different but
equivalent approaches to scalar or tensorial Minkowski functionals in
mathematics and in physics, hence making the mathematical measure theoretic
method more readily accessible for future application in the physical sciences
Worldwide Relationships in the Fern Genus Pteridium (Bracken) Based on Nuclear Genome Markers
PREMISE: Spore-bearing plants are capable of dispersing very long distances. However, it is not known if gene flow can prevent genetic divergence in widely distributed taxa. Here we address this issue, and examine systematic relationships at a global geographic scale for the fern genus Pteridium.
METHODS: We sampled plants from 100 localities worldwide, and generated nucleotide data from four nuclear genes and two plastid regions. We also examined 2801 single nucleotide polymorphisms detected by a restriction site-associated DNA approach.
RESULTS: We found evidence for two distinct diploid species and two allotetraploids between them. The “northern” species (Pteridium aquilinum) has distinct groups at the continental scale (Europe, Asia, Africa, and North America). The northern European subspecies pinetorum appears to involve admixture among all of these. A sample from the Hawaiian Islands contained elements of both North American and Asian P. aquilinum. The “southern” species, P. esculentum, shows little genetic differentiation between South American and Australian samples. Components of African genotypes are detected on all continents.
CONCLUSIONS: We find evidence of distinct continental-scale genetic differentiation in Pteridium. However, on top of this is a clear signal of recent hybridization. Thus, spore-bearing plants are clearly capable of extensive long-distance gene flow; yet appear to have differentiated genetically at the continental scale. Either gene flow in the past was at a reduced level, or vicariance is possible even in the face of long-distance gene flow
Cell shape analysis of random tessellations based on Minkowski tensors
To which degree are shape indices of individual cells of a tessellation
characteristic for the stochastic process that generates them? Within the
context of stochastic geometry and the physics of disordered materials, this
corresponds to the question of relationships between different stochastic
models. In the context of image analysis of synthetic and biological materials,
this question is central to the problem of inferring information about
formation processes from spatial measurements of resulting random structures.
We address this question by a theory-based simulation study of shape indices
derived from Minkowski tensors for a variety of tessellation models. We focus
on the relationship between two indices: an isoperimetric ratio of the
empirical averages of cell volume and area and the cell elongation quantified
by eigenvalue ratios of interfacial Minkowski tensors. Simulation data for
these quantities, as well as for distributions thereof and for correlations of
cell shape and volume, are presented for Voronoi mosaics of the Poisson point
process, determinantal and permanental point processes, and Gibbs hard-core and
random sequential absorption processes as well as for Laguerre tessellations of
polydisperse spheres and STIT- and Poisson hyperplane tessellations. These data
are complemented by mechanically stable crystalline sphere and disordered
ellipsoid packings and area-minimising foam models. We find that shape indices
of individual cells are not sufficient to unambiguously identify the generating
process even amongst this limited set of processes. However, we identify
significant differences of the shape indices between many of these tessellation
models. Given a realization of a tessellation, these shape indices can narrow
the choice of possible generating processes, providing a powerful tool which
can be further strengthened by density-resolved volume-shape correlations.Comment: Chapter of the forthcoming book "Tensor Valuations and their
Applications in Stochastic Geometry and Imaging" in Lecture Notes in
Mathematics edited by Markus Kiderlen and Eva B. Vedel Jense
Making Connections: A Handbook for Effective Formal Mentoring Programs in Academia
This book, Making Connections: A Handbook for Effective Formal Mentoring Programs in Academia, makes a unique and needed contribution to the mentoring field as it focuses solely on mentoring in academia. This handbook is a collaborative institutional effort between Utah State University’s (USU) Empowering Teaching Open Access Book Series and the Mentoring Institute at the University of New Mexico (UNM). This book is available through (a) an e-book through Pressbooks, (b) a downloadable PDF version on USU’s Open Access Book Series website), and (c) a print version available for purchase on the USU Empower Teaching Open Access page, and on Amazon
Molecular Systematics of the Deep-Sea Hydrothermal Vent Endemic Brachyuran Family Bythograeidae: A Comparison of Three Bayesian Species Tree Methods
Brachyuran crabs of the family Bythograeidae are endemic to deep-sea hydrothermal vents and represent one of the most successful groups of macroinvertebrates that have colonized this extreme environment. Occurring worldwide, the family includes six genera (Allograea, Austinograea, Bythograea, Cyanagraea, Gandalfus, and Segonzacia) and fourteen formally described species. To investigate their evolutionary relationships, we conducted Maximum Likelihood and Bayesian molecular phylogenetic analyses, based on DNA sequences from fragments of three mitochondrial genes (16S rDNA, Cytochrome oxidase I, and Cytochrome b) and three nuclear genes (28S rDNA, the sodium–potassium ATPase a-subunit ‘NaK’, and Histone H3A). We employed traditional concatenated (i.e., supermatrix) phylogenetic methods, as well as three recently developed Bayesian multilocus methods aimed at inferring species trees from potentially discordant gene trees. We found strong support for two main clades within Bythograeidae: one comprising the members of the genus Bythograea; and the other comprising the remaining genera. Relationships within each of these two clades were partially resolved. We compare our results with an earlier hypothesis on the phylogenetic relationships among bythograeid genera based on morphology. We also discuss the biogeography of the family in the light of our results. Our species tree analyses reveal differences in how each of the three methods weighs conflicting phylogenetic signal from different gene partitions and how limits on the number of outgroup taxa may affect the results
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
- …