27 research outputs found

    Wideband Characteristic Basis Functions in Radiation Problems

    Get PDF
    In this paper, the use of characteristic basis function (CBF) method, augmented by the application of asymptotic waveform evaluation (AWE) technique is analyzed in the context of the application to radiation problems. Both conventional and wideband CBFs are applied to the analysis of wire and planar antennas

    Quantifying tropical peatland dissolved organic carbon (DOC) using UV-visible spectroscopy

    Get PDF
    UV–visible spectroscopy has been shown to be a useful technique for determining dissolved organic carbon (DOC) concentrations. However, at present we are unaware of any studies in the literature that have investigated the suitability of this approach for tropical DOC water samples from any tropical peatlands, although some work has been performed in other tropical environments. We used water samples from two oil palm estates in Sarawak, Malaysia to: i) investigate the suitability of both single and two-wavelength proxies for tropical DOC determination; ii) develop a calibration dataset and set of parameters to calculate DOC concentrations indirectly; iii) provide tropical researchers with guidance on the best spectrophotometric approaches to use in future analyses of DOC. Both single and two-wavelength model approaches performed well with no one model significantly outperforming the other. The predictive ability of the models suggests that UV–visible spectroscopy is both a viable and low cost method for rapidly analyzing DOC in water samples immediately post-collection, which can be important when working at remote field sites with access to only basic laboratory facilities

    International medical graduates in family medicine in the United States of America: an exploration of professional characteristics and attitudes

    Get PDF
    BACKGROUND: The number of international medical graduates (IMGs) entering family medicine in the United States of America has steadily increased since 1997. Previous research has examined practice locations of these IMGs and their role in providing care to underserved populations. To our knowledge, research does not exist comparing professional profiles, credentials and attitudes among IMG and United States medical graduate (USMG) family physicians in the United States. The objective of this study is to determine, at the time when a large influx of IMGs into family medicine began, whether differences existed between USMG and IMG family physicians in regard to personal and professional characteristics and attitudes that may have implications for the health care system resulting from the increasing numbers of IMGs in family medicine in the United States. METHODS: This is a secondary data analysis of the 1996–1997 Community Tracking Study (CTS) Physician Survey comparing 2360 United States medical graduates and 366 international medical graduates who were nonfederal allopathic or osteopathic family physicians providing direct patient care for at least 20 hours per week. RESULTS: Compared to USMGs, IMGs were older (p < 0.001) and practised in smaller (p = 0.0072) and younger practices (p < 0.001). Significantly more IMGs practised in metropolitan areas versus rural areas (p = 0.0454). More IMG practices were open to all new Medicaid (p = 0.018) and Medicare (p = 0.0451) patients, and a greater percentage of their revenue was derived from these patients (p = 0.0020 and p = 0.0310). Fewer IMGs were board-certified (p < 0.001). More IMGs were dissatisfied with their overall careers (p = 0.0190). IMGs and USMGs did not differ in terms of self-rated ability to deliver high-quality care to their patients (p = 0.4626). For several of the clinical vignettes, IMGs were more likely to order tests, refer patients to specialists or require office visits than USMGs. CONCLUSION: There are significant differences between IMG and USMG family physicians' professional profiles and attitudes. These differences from 1997 merit further exploration and possible follow-up, given the increased proportion of family physicians who are IMGs in the United States

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≀0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Application of Satellite-Based Precipitation Estimates to Rainfall-Runoff Modelling in a Data-Scarce Semi-Arid Catchment

    No full text
    Rainfall-runoff modelling is a useful tool for water resources management. This study presents a simple daily rainfall-runoff model, based on the water balance equation, which we apply to the 11,630 km2 Lesser Zab catchment in northeast Iraq. The model was forced by either observed daily rain gauge data from four stations in the catchment or satellite-derived rainfall estimates from two TRMM Multi-satellite Precipitation Analysis (TMPA) data products (TMPA-3B42 and 3B42RT) based on the Tropical Rainfall Measuring Mission (TRMM) from 2003 to 2014. As well as using raw TMPA data, we used a bias-correction method to adjust TMPA values based on rain gauge data. The uncorrected TMPA data products underestimated observed mean catchment rainfall by −10.1% and −10.7%. Corrected data also slightly underestimated gauged rainfall by −0.7% and −1.6%, respectively. Nash-Sutcliffe Efficiency (NSE) and Pearson’s Correlation Coefficient (r) for the model fit with the observed hydrograph were 0.75 and 0.87, respectively, for a calibration period (2010–2011) using gauged rainfall data. Model validation performance (2012–2014) was best (highest NSE and r; lowest RMSE and bias) using the corrected 3B42 data product and poorest when driven by uncorrected 3B42RT data. Uncertainty and equifinality were also explored. Our results suggest that TRMM data can be used to drive rainfall-runoff modelling in semi-arid catchments, particularly when corrected using rain gauge data

    Estimating daily reference evapotranspiration in a semi-arid region using remote sensing data

    No full text
    Estimating daily evapotranspiration is challenging when ground observation data are not available or scarce. Remote sensing can be used to estimate the meteorological data necessary for calculating reference evapotranspiration ETₒ. Here, we assessed the accuracy of daily ETₒ estimates derived from remote sensing (ETₒ-RS) compared with those derived from four ground-based stations (ETₒ-G) in Kurdistan (Iraq) over the period 2010–2014. Near surface air temperature, relative humidity and cloud cover fraction were derived from the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit (AIRS/AMSU), and wind speed at 10 m height from MERRA (Modern-Era Retrospective Analysis for Research and Application). Four methods were used to estimate ETₒ: Hargreaves–Samani (HS), Jensen–Haise (JH), McGuinness–Bordne (MB) and the FAO Penman Monteith equation (PM). ETₒ-G (PM) was adopted as the main benchmark. HS underestimated ETₒ by 2%–3% (R2 = 0.86 to 0.90; RMSE = 0.95 to 1.2 mm day−1 at different stations). JH and MB overestimated ETₒ by 8% to 40% (R2= 0.85 to 0.92; RMSE from 1.18 to 2.18 mm day−1). The annual average values of ETₒ estimated using RS data and ground-based data were similar to one another reflecting low bias in daily estimates. They ranged between 1153 and 1893 mm year−1 for ETₒ-G and between 1176 and 1859 mm year−1 for ETₒ-RS for the different stations. Our results suggest that ETₒ-RS (HS) can yield accurate and unbiased ETₒ estimates for semi-arid regions which can be usefully employed in water resources management
    corecore