1,403 research outputs found
The key aspects of innovation-oriented regional industrial and economic policy
Integration processes taking place in the economy, the new requirements to enhance the effectiveness of production during international competition as well as the need to ensure the social conditions lead to the development and implementation of innovation-oriented regional industrial and economic policy, which in its turn, requires adopting substantial organizational and economic recommendations
Neuromorphometric characterization with shape functionals
This work presents a procedure to extract morphological information from
neuronal cells based on the variation of shape functionals as the cell geometry
undergoes a dilation through a wide interval of spatial scales. The targeted
shapes are alpha and beta cat retinal ganglion cells, which are characterized
by different ranges of dendritic field diameter. Image functionals are expected
to act as descriptors of the shape, gathering relevant geometric and
topological features of the complex cell form. We present a comparative study
of classification performance of additive shape descriptors, namely, Minkowski
functionals, and the nonadditive multiscale fractal. We found that the proposed
measures perform efficiently the task of identifying the two main classes alpha
and beta based solely on scale invariant information, while also providing
intraclass morphological assessment
High-dimensional quantum dynamics of adsorption and desorption of H at Cu(111)
We performed high-dimensional quantum dynamical calculations of the
dissociative adsorption and associative desorption of hydrogen on Cu(111). The
potential energy surface (PES) is obtained from density functional theory
calculations. Two regimes of dynamics are found, at low energies sticking is
determined by the minimum energy barrier, at high energies by the distribution
of barrier heights. Experimental results are well-reproduced qualitatively, but
some quantitative discrepancies are identified as well.Comment: 4 two column pages, revtex, 4 figures, to appear in Phys. Rev. Let
Improved Collective Thomson Scattering measurements of fast ions at ASDEX Upgrade
Understanding the behaviour of the confined fast ions is important in both
current and future fusion experiments. These ions play a key role in heating
the plasma and will be crucial for achieving conditions for burning plasma in
next-step fusion devices. Microwave-based Collective Thomson Scattering (CTS)
is well suited for reactor conditions and offers such an opportunity by
providing measurements of the confined fast-ion distribution function resolved
in space, time and 1D velocity space. We currently operate a CTS system at
ASDEX Upgrade using a gyrotron which generates probing radiation at 105 GHz. A
new setup using two independent receiver systems has enabled improved
subtraction of the background signal, and hence the first accurate
characterization of fast-ion properties. Here we review this new dual-receiver
CTS setup and present results on fast-ion measurements based on the improved
background characterization. These results have been obtained both with and
without NBI heating, and with the measurement volume located close to the
centre of the plasma. The measurements agree quantitatively with predictions of
numerical simulations. Hence, CTS studies of fast-ion dynamics at ASDEX Upgrade
are now feasible. The new background subtraction technique could be important
for the design of CTS systems in other fusion experiments.Comment: 4 pages, 4 figures, to appear in Proc. of "Fusion Reactor
Diagnostics", eds. F. P. Orsitto et al., AIP Conf. Pro
Human Pluripotent Stem-Cell-Derived Cortical Neurons Integrate Functionally into the Lesioned Adult Murine Visual Cortex in an Area-Specific Way
The transplantation of pluripotent stem-cell-derived neurons constitutes a promising avenue for the treatment of several brain diseases. However, their potential for the repair of the cerebral cortex remains unclear, given its complexity and neuronal diversity. Here, we show that human visual cortical cells differentiated from embryonic stem cells can be transplanted and can integrate successfully into the lesioned mouse adult visual cortex. The transplanted human neurons expressed the appropriate repertoire of markers of six cortical layers, projected axons to specific visual cortical targets, and were synaptically active within the adult brain. Moreover, transplant maturation and integration were much less efficient following transplantation into the lesioned motor cortex, as previously observed for transplanted mouse cortical neurons. These data constitute an important milestone for the potential use of human PSC-derived cortical cells for the reassembly of cortical circuits and emphasize the importance of cortical areal identity for successful transplantation. Espuny-Camacho et al. show that transplanted ESC-derived human cortical neurons integrate functionally into the lesioned adult mouse brain. Transplanted neurons display visual cortical identity and show specific restoration of damaged cortical pathways following transplantation into the visual but not the motor cortex, suggesting the importance of areal-identity match for successful cortical repair
Non-adiabatic Josephson Dynamics in Junctions with in-Gap Quasiparticles
Conventional models of Josephson junction dynamics rely on the absence of low
energy quasiparticle states due to a large superconducting gap. With this
assumption the quasiparticle degrees of freedom become "frozen out" and the
phase difference becomes the only free variable, acting as a fictitious
particle in a local in time Josephson potential related to the adiabatic and
non-dissipative supercurrent across the junction. In this article we develop a
general framework to incorporate the effects of low energy quasiparticles
interacting non-adiabatically with the phase degree of freedom. Such
quasiparticle states exist generically in constriction type junctions with high
transparency channels or resonant states, as well as in junctions of
unconventional superconductors. Furthermore, recent experiments have revealed
the existence of spurious low energy in-gap states in tunnel junctions of
conventional superconductors - a system for which the adiabatic assumption
typically is assumed to hold. We show that the resonant interaction with such
low energy states rather than the Josephson potential defines nonlinear
Josephson dynamics at small amplitudes.Comment: 9 pages, 1 figur
GPs’ strategies in exploring the preschool child’s wellbeing in the paediatric consultation
Background:
Although General Practitioners (GPs) are uniquely placed to identify children with emotional, social, and behavioural problems, they succeed in identifying only a small number of them. The aim of this article is to explore the strategies, methods, and tools employed by GPs in the assessment of the preschool child’s emotional, mental, social, and behavioural health. We look at how GPs address parental care of the child in general and in situations where GPs have a particular awareness of the child.
Method:
Twenty-eight Danish GPs were purposively selected to take part in a qualitative study which combined focus-group discussions, observation of child consultations, and individual interviews with GPs.
Results:
Analysis of the data suggests that GPs have developed a set of methods, and strategies to assess the preschool child and parental care of the child. They look beyond paying narrow attention to the physical health of the child and they have expanded their practice to include the relations and interactions in the consultation room. The physical examination of the child continues to play a central role in doctor-child communication.
Conclusion:
The participating GPs’ strategies helped them to assess the wellbeing of the preschool child but they often find it difficult to share their impressions with parents
APOLLO: the Apache Point Observatory Lunar Laser-ranging Operation: Instrument Description and First Detections
A next-generation lunar laser ranging apparatus using the 3.5 m telescope at
the Apache Point Observatory in southern New Mexico has begun science
operation. APOLLO (the Apache Point Observatory Lunar Laser-ranging Operation)
has achieved one-millimeter range precision to the moon which should lead to
approximately one-order-of-magnitude improvements in the precision of several
tests of fundamental properties of gravity. We briefly motivate the scientific
goals, and then give a detailed discussion of the APOLLO instrumentation.Comment: 37 pages; 10 figures; 1 table: accepted for publication in PAS
Hyperacute Directional Hearing and Phonotactic Steering in the Cricket (Gryllus bimaculatus deGeer)
Background: Auditory mate or prey localisation is central to the lifestyle of many animals and requires precise directional hearing. However, when the incident angle of sound approaches 0u azimuth, interaural time and intensity differences gradually vanish. This poses a demanding challenge to animals especially when interaural distances are small. To cope with these limitations imposed by the laws of acoustics, crickets employ a frequency tuned peripheral hearing system. Although this enhances auditory directionality the actual precision of directional hearing and phonotactic steering has never been studied in the behaviourally important frontal range. Principal Findings: Here we analysed the directionality of phonotaxis in female crickets (Gryllus bimaculatus) walking on an open-loop trackball system by measuring their steering accuracy towards male calling song presented at frontal angles of incidence. Within the range of 630u, females reliably discriminated the side of acoustic stimulation, even when the sound source deviated by only 1u from the animal’s length axis. Moreover, for angles of sound incidence between 1u and 6u the females precisely walked towards the sound source. Measuring the tympanic membrane oscillations of the front leg ears with a laser vibrometer revealed between 0u and 30u a linear increasing function of interaural amplitude differences with a slope of 0.4 dB/u. Auditory nerve recordings closely reflected these bilateral differences in afferent response latency and intensity that provide the physiological basis for precise auditory steering
- …