Understanding the behaviour of the confined fast ions is important in both
current and future fusion experiments. These ions play a key role in heating
the plasma and will be crucial for achieving conditions for burning plasma in
next-step fusion devices. Microwave-based Collective Thomson Scattering (CTS)
is well suited for reactor conditions and offers such an opportunity by
providing measurements of the confined fast-ion distribution function resolved
in space, time and 1D velocity space. We currently operate a CTS system at
ASDEX Upgrade using a gyrotron which generates probing radiation at 105 GHz. A
new setup using two independent receiver systems has enabled improved
subtraction of the background signal, and hence the first accurate
characterization of fast-ion properties. Here we review this new dual-receiver
CTS setup and present results on fast-ion measurements based on the improved
background characterization. These results have been obtained both with and
without NBI heating, and with the measurement volume located close to the
centre of the plasma. The measurements agree quantitatively with predictions of
numerical simulations. Hence, CTS studies of fast-ion dynamics at ASDEX Upgrade
are now feasible. The new background subtraction technique could be important
for the design of CTS systems in other fusion experiments.Comment: 4 pages, 4 figures, to appear in Proc. of "Fusion Reactor
Diagnostics", eds. F. P. Orsitto et al., AIP Conf. Pro