62 research outputs found

    Phase-locked mutants of Mycoplasma agalactiae: defining the molecular switch of high-frequency Vpma antigenic variation

    Get PDF
    Mycoplasma agalactiae, an important pathogen of small ruminants, exhibits antigenic diversity by switching the expression of multiple surface lipoproteins called Vpmas (Variable proteins of M. agalactiae). Although phase variation has been shown to play important roles in many host–pathogen interactions, the biological significance and the mechanism of Vpma oscillations remain largely unclear. Here, we demonstrate that all six Vpma proteins are expressed in the type strain PG2 and all undergo phase variation at an unusually high frequency. Furthermore, targeted gene disruption of the xer1 gene encoding a putative site-specific recombinase adjacent to the vpma locus was accomplished via homologous recombination using a replicon-based vector. Inactivation of xer1 abolished further Vpma switching and the ‘phase-locked’ mutants (PLMs) continued to steadily express only a single Vpma product. Complementation of the wild-type xer1 gene in PLMs restored Vpma phase variation thereby proving that Xer1 is essential for vpma inversions. The study is not only instrumental in enhancing our ability to understand the role of Vpmas in M. agalactiae infections but also provides useful molecular approaches to study potential disease factors in other ‘difficult-to-manipulate’ mycoplasmas

    Lymph node homing cells biologically enriched for γΎ T cells express multiple genes from the T19 repertoire

    Get PDF
    Sheep γΎ T cells have been shown serologically to express T19, a membrane protein of 180-200 kDa which is a member of the scavenger receptor superfamily. Previous work from this laboratory resulted in the detection of a multigene family of T19-like genes in the sheep genome. In this study nucleotide sequences from several T19 genes were determined and are reported along with the corresponding segments of a number of expressed mRNA molecules. A segment of a single sheep T19-like gene was sequenced and these data, along with the corresponding sequences from cloned T19-like cDNA molecules from sheep and cow, were used to design an ollgonucleotide primer system suitable for amplification of corresponding segments of many T19 genes and their cDNAs. Between 30 and 40% of cloned T19 genes were amenable to amplification using the selected primers, and sequence analysis of cloned PCR products confirmed that different T19 genes encode unique amino acid sequences. The expression of multiple T19 genes was established using cDNA molecules obtained from a single sample of sheep lymphocyte mRNA. The possible role of the T19 family of genes is discusse

    Pronova Biopharma - Vurdering av utslipp til Sandefjordsfjorden

    Get PDF
    Det er gjort en vurdering av hvordan avlÞpsvann fra Pronova Biopharma kan pÄvirke oksygenforholdene i Sandefjordsfjorden. Arbeidet har bl.a. omfattet strÞmmÄlinger, oksygenprÞver og bruk av modeller. Hovedkonklusjonen er at til vanlig vil utslippet bare i meget liten grad pÄvirke oksygenforholdene. De viktigste elementene i fjordens oksygenbudsjett varierer med tiden, og hÞsten er den mest sÄrbare perioden. Man kan ikke se helt bort fra at et sammentreff av flere ugunstige faktorer da kan skape en periode med en merkbar redusert konsentrasjon (til vannkvalitetsklasse Mindre God) i en lokal vannmasse omkring utslippet. Ingen undersÞkelser har imidlertid pÄvist at dette har skjedd.Pronova Biopharma AS, Sandefjord v/ A.L. Steneru

    Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System

    Get PDF
    The type IX secretion system (T9SS) has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32?36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    Surface Diversity in Mycoplasma agalactiae Is Driven by Site-Specific DNA Inversions within the vpma Multigene Locus

    No full text
    The ruminant pathogen Mycoplasma agalactiae possesses a family of abundantly expressed variable surface lipoproteins called Vpmas. Phenotypic switches between Vpma members have previously been correlated with DNA rearrangements within a locus of vpma genes and are proposed to play an important role in disease pathogenesis. In this study, six vpma genes were characterized in the M. agalactiae type strain PG2. All vpma genes clustered within an 8-kb region and shared highly conserved 5â€Č untranslated regions, lipoprotein signal sequences, and short N-terminal sequences. Analyses of the vpma loci from consecutive clonal isolates showed that vpma DNA rearrangements were site specific and that cleavage and strand exchange occurred within a minimal region of 21 bp located within the 5â€Č untranslated region of all vpma genes. This process controlled expression of vpma genes by effectively linking the open reading frame (ORF) of a silent gene to a unique active promoter sequence within the locus. An ORF (xer1) immediately adjacent to one end of the vpma locus did not undergo rearrangement and had significant homology to a distinct subset of genes belonging to the λ integrase family of site-specific xer recombinases. It is proposed that xer1 codes for a site-specific recombinase that is not involved in chromosome dimer resolution but rather is responsible for the observed vpma-specific recombination in M. agalactiae
    • 

    corecore