451 research outputs found

    Spatial overlap of grey seals and fisheries in Irish waters, some new insights using telemetry technology and VMS

    Get PDF
    Seals and humans often target the same food resource, leading to competition. This is of mounting concern with fish stocks in global decline. Grey seals were tracked from southeast Ireland, an area of mixed demersal and pelagic fisheries, and overlap with fisheries on the Celtic Shelf and Irish Sea was assessed. Overall, there was low overlap between the tagged seals and fisheries. However, when we separate active (e.g. trawls) and passive gear (e.g. nets, lines) fisheries, a different picture emerged. Overlap with active fisheries was no different from that expected under a random distribution, but overlap with passive fisheries was significantly higher. This suggests that grey seals may be targeting the same areas as passive fisheries and/or specifically targeting passive gear. There was variation in foraging areas between individual seals suggesting habitat partitioning to reduce intra-specific competition or potential individual specialisation in foraging behaviour. Our findings support other recent assertions that seal/fisheries interactions in Irish waters are an issue in inshore passive fisheries, most likely at the operational and individual level. This suggests that seal population management measures would be unjustifiable, and mitigation is best focused on minimizing interactions at nets

    Mutant huntingtin enhances activation of dendritic Kv4 K+ channels in striatal spiny projection neurons

    Get PDF
    Huntington\u27s disease (HD) is initially characterized by an inability to suppress unwanted movements, a deficit attributable to impaired synaptic activation of striatal indirect pathway spiny projection neurons (iSPNs). To better understand the mechanisms underlying this deficit, striatal neurons in ex vivo brain slices from mouse genetic models of HD were studied using electrophysiological, optical and biochemical approaches. Distal dendrites of iSPNs from symptomatic HD mice were hypoexcitable, a change that was attributable to increased association of dendritic Kv4 potassium channels with auxiliary KChIP subunits. This association was negatively modulated by TrkB receptor signaling. Dendritic excitability of HD iSPNs was rescued by knocking-down expression of Kv4 channels, by disrupting KChIP binding, by restoring TrkB receptor signaling or by lowering mutant-Htt (mHtt) levels with a zinc finger protein. Collectively, these studies demonstrate that mHtt induces reversible alterations in the dendritic excitability of iSPNs that could contribute to the motor symptoms of HD

    Rampant Centrosome Amplification Underlies more Aggressive Disease Course of Triple Negative Breast Cancers

    Get PDF
    Centrosome amplification (CA), a cell-biological trait, characterizes pre-neoplastic and pre-invasive lesions and is associated with tumor aggressiveness. Recent studies suggest that CA leads to malignant transformation and promotes invasion in mammary epithelial cells. Triple negative breast cancer (TNBC), a histologically-aggressive subtype shows high recurrence, metastases, and mortality rates. Since TNBC and non- TNBC follow variable kinetics of metastatic progression, they constitute a novel test bed to explore if severity and nature of CA can distinguish them apart. We quantitatively assessed structural and numerical centrosomal aberrations for each patient sample in a large-cohort of grade-matched TNBC (n = 30) and non-TNBC (n = 98) cases employing multi-color confocal imaging. Our data establish differences in incidence and severity of CA between TNBC and non-TNBC cell lines and clinical specimens. We found strong correlation between CA and aggressiveness markers associated with metastasis in 20 pairs of grade-matched TNBC and non-TNBC specimens (p \u3c 0.02). Time-lapse imaging of MDA-MB-231 cells harboring amplified centrosomes demonstrated enhanced migratory ability. Our study bridges a vital knowledge gap by pinpointing that CA underlies breast cancer aggressiveness. This previously unrecognized organellar inequality at the centrosome level may allow early-risk prediction and explain higher tumor aggressiveness and mortality rates in TNBC patients

    The first example of a paraben-dependent antibody to an Rh protein

    Full text link
    Parabens are added to a commercial LISS (C-LISS) to retard microbial growth. Paraben-dependent anti-Jk a has been detected by the use of C-LISS. CASE REPORT: Serum from a D+ woman reacted in antiglobulin tests with RBCs stored (2-4 hours, 22-25 C) in C-LISS (L w and Messeter formulation, Immucor). Freshly prepared C-LISS-suspended RBCs did not react; nor did RBCs stored in LISS-additive reagents, PEG, saline, or homemade LISS. RESULTS: Studies using C-LISS-stored RBCs revealed an antibody that reacted with D+ and rrV+ RBCs, but not with r r, r r, or rrV-VS- RBCs. All partial D RBC phenotypes tested reacted, as did D+LW-, r G r, r G r, r y r, r s rV+VS+, and r s rV-VS+ RBCs. The active ingredient in C-LISS was propylparaben. Other LISS ingredients were not required; saline solutions of propylparaben, ethylparaben, methyl salicylate, 2-phenoxyethanol, and butylparaben were active. Methylparaben and methyl- m -hydroxybenzoate were inactive. Reactivity to C-LISS-stored RBCs could not be inhibited by propylparaben. Reactivity with D+V- and D-V+VS+ RBCs was not separable by adsorption-elution. CONCLUSIONS: This antibody likely detects a neoantigen formed between active compounds and RBC membranes. Review of the structure of active compounds suggests that proximity between methyl and hydroxyl groups is important for binding with RBC membranes. The role of RhD is unclear; no single portion of RhD protein appears to be implicated.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73085/1/j.1537-2995.2001.41030371.x.pd

    HSET Overexpression Fuels Tumor Progression via Centrosome Clustering-Independent Mechanisms in Breast Cancer Patients

    Get PDF
    Human breast tumors harbor supernumerary centrosomes in almost 80% of tumor cells. Although amplified centrosomes compromise cell viability via multipolar spindles resulting in death-inducing aneuploidy, cancer cells tend to cluster extra centrosomes during mitosis. As a result cancer cells display bipolar spindle phenotypes to maintain a tolerable level of aneuploidy, an edge to their survival. HSET/KifC1, a kinesin-like minus-end directed microtubule motor has recently found fame as a crucial centrosome clustering molecule. Here we show that HSET promotes tumor progression via mechanisms independent of centrosome clustering. We found that HSET is overexpressed in breast carcinomas wherein nuclear HSET accumulation correlated with histological grade and predicted poor progression-free and overall survival. In addition, deregulated HSET protein expression was associated with gene amplification and/or translocation. Our data provide compelling evidence that HSET overexpression is pro-proliferative, promotes clonogenic-survival and enhances cellcycle kinetics through G2 and M-phases. Importantly, HSET co-immunoprecipitates with survivin, and its overexpression protects survivin from proteasome-mediated degradation, resulting in its increased steady-state levels. We provide the first evidence of centrosome clustering-independent activities of HSET that fuel tumor progression and firmly establish that HSET can serve both as a potential prognostic biomarker and as a valuable cancer-selective therapeutic target

    Respiratory plasticity in response to changes in oxygen supply and demand

    Get PDF
    Aerobic organisms maintain O2 homeostasis by responding to changes in O2 supply and demand in both short and long time domains. In this review, we introduce several specific examples of respiratory plasticity induced by chronic changes in O2 supply (environmental hypoxia or hyperoxia) and demand (exercise-induced and temperature-induced changes in aerobic metabolism). These studies reveal that plasticity occurs throughout the respiratory system, including modifications to the gas exchanger, respiratory pigments, respiratory muscles, and the neural control systems responsible for ventilating the gas exchanger. While some of these responses appear appropriate (e.g., increases in lung surface area, blood O2 capacity, and pulmonary ventilation in hypoxia), other responses are potentially harmful (e.g., increased muscle fatigability). Thus, it may be difficult to predict whole-animal performance based on the plasticity of a single system. Moreover, plastic responses may differ quantitatively and qualitatively at different developmental stages. Much of the current research in this field is focused on identifying the cellular and molecular mechanisms underlying respiratory plasticity. These studies suggest that a few key molecules, such as hypoxia inducible factor (HIF) and erythropoietin, may be involved in the expression of diverse forms of plasticity within and across species. Studying the various ways in which animals respond to respiratory challenges will enable a better understanding of the integrative response to chronic changes in O2 supply and deman

    A review of the ecological value of Cusuco National Park an urgent call forconservation action in a highly threatened Mesoamerican cloud forest

    Get PDF
    Cloud forests are amongst the most biologically unique, yet threatened, ecosystems in Mesoamerica. We summarize the ecological value and conservation status of a well-studied cloud forest site: Cusuco National Park (CNP), a 23,440 ha protected area in the Merendón mountains, northwest Honduras. We show CNP to have exceptional biodiversity; of 966 taxa identified to a species-level to date, 362 (37.5%) are Mesoamerican endemics, 67 are red-listed by the IUCN, and at least 49 are micro-endemics known only from the Merendón range. CNP also provides key ecosystem services including provision of drinking water and downstream flood mitigation, as well as carbon sequestration, with an estimated stock of 3.5 million megagrams of carbon in 2000. Despite its ecological importance, CNP faces multiple environmental threats and associated stresses, including deforestation (1,759 ha since 2000 equating to 7% of total forest area), poaching (7% loss of mammal relative abundance per year), amphibian declines due to chytridiomycosis (70% of species threatened or near-threatened), and climate change (a mean 2.6 °C increase in temperature and 112 mm decrease in rainfall by 2100). Despite conservation actions, including community ranger patrols, captive-breeding programmes, and ecotourism initiatives, environmental degradation of CNP continues. Further action is urgently required, including reinforcement and expansion of ranger programmes, greater stakeholder engagement, community education programmes, development of alternative livelihood projects, and legislative enforcement and prosecution. Without a thorough and rapid response to understand and mitigate illegal activities, the extirpation and extinction of species and the loss of vital ecosystem services are inevitable in the coming decades
    corecore