16 research outputs found

    Solid-State Synthesis of Direct Z-Scheme Cu<sub>2</sub>O/WO<sub>3</sub> Nanocomposites with Enhanced Visible-Light Photocatalytic Performance

    No full text
    In this paper, we report the preparation of visible-light active direct Z-scheme Cu2O/WO3 nanocomposite photocatalyst by a solid-state reaction avoiding the otherwise inevitable formation of CuWO4 phase in wet syntheses. Structure, morphology, and thermal and optical properties of prepared WO3 nanoplatelets decorated by Cu2O were investigated by XRD, Raman spectroscopy, SEM/TEM, combined thermogravimetric (TG)/differential scanning calorimetry (DSC) analysis, and UV–VIS spectroscopy. The photocatalytic performance of the prepared samples under UV and visible light was studied through monitoring discoloration of methylene blue under illumination by selected wavelengths, allowing for the distinguishing between the contributions of the two semiconductive components. Experimental results showed that the decoration of WO3 nanoplates by Cu2O nanoparticles led to an improvement in photocatalytic performance, regardless of used LED (Light-Emitting Diode) wavelength, even at low concentrations. By using scavengers selectively blocking reactive species involved in the discoloration reaction, we determined that the Cu2O/WO3 nanocomposite exhibited the characteristics of direct Z-scheme-type photocatalyst

    Preparation of microfibers from wood/ionic liquid solutions

    No full text
    International audienceTwo types of ionic liquids, 1-ethyl-3-methylimidazolim acetate and 1-ethyl-3-methylimidazolium lactate, were employed for the direct processing of pine wood into microfibers. The concentration of 5 wt.% of wood in ionic liquids was rated as the most appropriate for electrospinning. The fibers were electrospun into the collector water bath. The final structure varied from individual microfibers to fiber bundles. It was demonstrated that 1-ethyl-3-methylimidazolium lactate is a powerful solvent and provides the direct transformation of pristine pine wood into the non-wovens
    corecore