27 research outputs found

    FORGETTER2 protein phosphatase and phospholipase D modulate heat stress memory in Arabidopsis

    Get PDF
    Summary Plants can mitigate environmental stress conditions through acclimation. In the case of fluctuating stress conditions such as high temperatures, maintaining a stress memory enables a more efficient response upon recurring stress. In a genetic screen for Arabidopsis thaliana mutants impaired in the memory of heat stress (HS) we have isolated the FORGETTER2 (FGT2) gene which encodes a type 2C protein phosphatase (PP2C) of the D-clade. Mutants in fgt2 acquire thermotolerance normally; however, they are defective in the memory of HS. FGT2 interacts with phospholipase Dα2 (PLDα2), which is involved in metabolizing membrane phospholipids, and PLDα2 is also required for HS memory. In summary, we uncover a previously unknown component of HS memory and identify the FGT2 protein phosphatase and PLDα2 as crucial players, suggesting that phosphatidic acid-dependent signaling or membrane composition dynamics underlie HS memory

    Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in <i>Arabidopsis</i>

    Get PDF
    Moderate heat stress primes plants to acquire tolerance to subsequent, more severe heat stress. Here the authors show that the HSFA3 transcription factor forms a heteromeric complex with HSFA2 to sustain activated transcription of genes required for acquired thermotolerance by promoting H3K4 hyper-methylation

    Glutamate, Glutamine and GABA Levels in Rat Brain Measured Using MRS, HPLC and NMR Methods in Study of Two Models of Autism

    Get PDF
    The disorders of the glutamatergic neurotransmission have been associated with pathogenesis of autism. In this study we evaluated the impact of the in vivo and ex vivo test methodology on measurements of levels of neurotransmitter amino acids in hippocampus of rats for valproic acid- (VPA) and thalidomide- (THAL) induced models of autism. The main goal was to compare the changes in concentrations of glutamate (Glu), glutamine (Gln) and GABA between both autistic groups and the control, measured in vivo and ex vivo in homogenates. The rat pups underwent three in vivo tests: ultrasonic vocalization (USV), magnetic resonance spectroscopy (MRS) and unilateral microdialysis of the hippocampus. Analyses of homogenates of rat hippocampus were performed using high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy. For the statistical analysis, we performed univariate and multivariate tests. USV test, which is considered in rodents as an indicator of pathology similar to autism, showed decreased USV in VPA and THAL groups. In vivo MRS studies demonstrated increases of Glu content in male rat’s hippocampus in VPA and THAL groups, while the microdialysis, which allows examination of the contents in the extracellular space, detected decreases in the basal level of Gln concentrations in VPA and THAL groups. Ex vivo HPLC studies showed that levels of Glu, Gln and GABA significantly increased in male rat’s hippocampus in the VPA and THAL groups, while NMR studies showed increased levels of Gln and GABA in the VPA group. Collectively, these results are consistent with the hypothesis suggesting the role of the glutamatergic disturbances on the pathogenesis of autism. For all methods used, the values of measured changes were in the same direction. The orthogonal partial least square discriminant analysis confirmed that both animal models of autism tested here can be used to trace neurochemical changes in the brain

    Tyr-Asp inhibition of glyceraldehyde 3-phosphate dehydrogenase affects plant redox metabolism

    Get PDF
    How organisms integrate metabolism with the external environment is a central question in biology. Here, we describe a novel regulatory small molecule, a proteogenic dipeptide Tyr-Asp, which improves plant tolerance to oxidative stress by directly interfering with glucose metabolism. Specifically, Tyr-Asp inhibits the activity of a key glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPC), and redirects glucose toward pentose phosphate pathway (PPP) and NADPH production. In line with the metabolic data, Tyr-Asp supplementation improved the growth performance of both Arabidopsis and tobacco seedlings subjected to oxidative stress conditions. Moreover, inhibition of Arabidopsis phosphoenolpyruvate carboxykinase (PEPCK) activity by a group of branched-chain amino acid-containing dipeptides, but not by Tyr-Asp, points to a multisite regulation of glycolytic/gluconeogenic pathway by dipeptides. In summary, our results open the intriguing possibility that proteogenic dipeptides act as evolutionarily conserved small-molecule regulators at the nexus of stress, protein degradation, and metabolism.Fil: Moreno, Juan C.. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Rojas, Bruno Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Vicente, Rubén. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Gorka, Michal. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Matz, Timon. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Chodasiewicz, Monika. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Peralta?Ariza, Juan S.. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Zhang, Youjun. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Alseekh, Saleh. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Childs, Dorothee. European Molecular Biology Laboratory; AlemaniaFil: Luzarowski, Marcin. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Nikoloski, Zoran. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Zarivach, Raz. Ben Gurion University of the Negev; IsraelFil: Walther, Dirk. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Hartman, Matias Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Figueroa, Carlos Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Iglesias, Alberto Alvaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Fernie, Alisdair R.. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Skirycz, Aleksandra. Max Planck Institute Of Molecular Plant Physiology; Alemani

    Characterization of three-dimensional cancer cell migration in mixed collagen-Matrigel scaffolds using microfluidics and image analysis

    Get PDF
    Microfluidic devices are becoming mainstream tools to recapitulate in vitro the behavior of cells and tissues. In this study, we use microfluidic devices filled with hydrogels of mixed collagen-Matrigel composition to study the migration of lung cancer cells under different cancer invasion microenvironments. We present the design of the microfluidic device, characterize the hydrogels morphologically and mechanically and use quantitative image analysis to measure the migration of H1299 lung adenocarcinoma cancer cells in different experimental conditions. Our results show the plasticity of lung cancer cell migration, which turns from mesenchymal in collagen only matrices, to lobopodial in collagen-Matrigel matrices that approximate the interface between a disrupted basement membrane and the underlying connective tissue. Our quantification of migration speed confirms a biphasic role of Matrigel. At low concentration, Matrigel facilitates migration, most probably by providing a supportive and growth factor retaining environment. At high concentration, Matrigel slows down migration, possibly due excessive attachment. Finally, we show that antibody-based integrin blockade promotes a change in migration phenotype from mesenchymal or lobopodial to amoeboid and analyze the effect of this change in migration dynamics, in regards to the structure of the matrix. In summary, we describe and characterize a robust microfluidic platform and a set of software tools that can be used to study lung cancer cell migration under different microenvironments and experimental conditions. This platform could be used in future studies, thus benefitting from the advantages introduced by microfluidic devices: precise control of the environment, excellent optical properties, parallelization for high throughput studies and efficient use of therapeutic drugs.We would like to acknowledge the support of the Spanish Ministry of Economy and Competitiveness, under grants number DPI2012-38090-C03-02 and DPI2015-64221-C2-2-R (COS), TEC2013-48552-C2-1-R, TEC2016-78052-R, TEC2015-73064-EXP (AMB) and the Torres Quevedo program PTQ-11-04778 (RP); the Spanish Ministry of Health (FIS PI13/02313) (AR); the Czech Science Foundation, under grant number 302/12/G157 (MK, MMaĆĄka); and the European Research Council (ERC) through project ERC-2012-StG 306751 (JMGA)

    Protein Complex Identification and quantitative complexome by CN-PAGE

    No full text
    The majority of cellular processes are carried out by protein complexes. Various size fractionation methods have previously been combined with mass spectrometry to identify protein complexes. However, most of these approaches lack the quantitative information which is required to understand how changes of protein complex abundance and composition affect metabolic fluxes. In this paper we present a proof of concept approach to quantitatively study the complexome in the model plant Arabidopsis thaliana at the end of the day (ED) and the end of the night (EN). We show that size-fractionation of native protein complexes by Clear-Native-PAGE (CN-PAGE), coupled with mass spectrometry can be used to establish abundance profiles along the molecular weight gradient. Furthermore, by deconvoluting complex protein abundance profiles, we were able to drastically improve the clustering of protein profiles. To identify putative interaction partners, and ultimately protein complexes, our approach calculates the Euclidian distance between protein profile pairs. Acceptable threshold values are based on a cut-off that is optimized by a receiver-operator characteristic (ROC) curve analysis. Our approach shows low technical variation and can easily be adapted to study in the complexome in any biological system.ISSN:2045-232

    Spatially enriched paralog rearrangements argue functionally diverse ribosomes arise during cold acclimation in arabidopsis

    Get PDF
    Ribosome biogenesis is essential for plants to successfully acclimate to low temperature. Without dedicated steps supervising the 60S large subunits (LSUs) maturation in the cytosol, e.g., Rei-like (REIL) factors, plants fail to accumulate dry weight and fail to grow at suboptimal low temperatures. Around REIL, the final 60S cytosolic maturation steps include proofreading and assembly of functional ribosomal centers such as the polypeptide exit tunnel and the P-Stalk, respectively. In consequence, these ribosomal substructures and their assembly, especially during low temperatures, might be changed and provoke the need for dedicated quality controls. To test this, we blocked ribosome maturation during cold acclimation using two independent reil double mutant genotypes and tested changes in their ribosomal proteomes. Additionally, we normalized our mutant datasets using as a blank the cold responsiveness of a wild-type Arabidopsis genotype. This allowed us to neglect any reil-specific effects that may happen due to the presence or absence of the factor during LSU cytosolic maturation, thus allowing us to test for cold-induced changes that happen in the early nucleolar biogenesis. As a result, we report that cold acclimation triggers a reprogramming in the structural ribosomal proteome. The reprogramming alters the abundance of specific RP families and/or paralogs in non-translational LSU and translational polysome fractions, a phenomenon known as substoichiometry. Next, we tested whether the cold-substoichiometry was spatially confined to specific regions of the complex. In terms of RP proteoforms, we report that remodeling of ribosomes after a cold stimulus is significantly constrained to the polypeptide exit tunnel (PET), i.e., REIL factor binding and functional site. In terms of RP transcripts, cold acclimation induces changes in RP families or paralogs that are significantly constrained to the P-Stalk and the ribosomal head. The three modulated substructures represent possible targets of mechanisms that may constrain translation by controlled ribosome heterogeneity. We propose that non-random ribosome heterogeneity controlled by specialized biogenesis mechanisms may contribute to a preferential or ultimately even rigorous selection of transcripts needed for rapid proteome shifts and successful acclimation

    Sulfur deficiency-induced genes affect seed protein accumulation and composition under sulfate deprivation

    No full text
    Sulfur deficiency-induced proteins SDI1 and SDI2 play a fundamental role in sulfur homeostasis under sulfate-deprived conditions (−S) by downregulating glucosinolates. Here, we identified that besides glucosinolate regulation under –S, SDI1 downregulates another sulfur pool, the S-rich 2S seed storage proteins in Arabidopsis (Arabidopsis thaliana) seeds. We identified that MYB28 directly regulates 2S seed storage proteins by binding to the At2S4 promoter. We also showed that SDI1 downregulates 2S seed storage proteins by forming a ternary protein complex with MYB28 and MYC2, another transcription factor involved in the regulation of seed storage proteins. These findings have significant implications for the understanding of plant responses to sulfur deficiency
    corecore