32 research outputs found

    THE STRANGE CROSS-REACTION OF MENADIONE (VITAMIN K3) AND 2,4-DINITROPHENYL LIGANDS WITH A MYELOMA PROTEIN AND SOME CONVENTIONAL ANTIBODIES

    Get PDF
    To explore the possibility that the affinity of some myeloma proteins for 2,4-dinitrophenyl (DNP) ligands is the consequence of a "strange" (i.e., unexpected) cross-reaction for more natural ligands, a variety of substances (primarily derivatives of purines, pyrimidines, naphthaquinone) were tested for ability to block the binding of [3H]-Δ-DNP-L-lysine by protein 315, an IgA mouse myeloma protein with high affinity for DNP ligands. The most impressive inhibiting activity was observed with 2-methyl-1,4-napthaquinone (menadione, vitamin K3). The affinity (intrinsic association constant) of protein 315 for menadione was 5 x 105 L/M (at 4°C). Because the same affinity was measured in direct-binding assays (e.g., equilibrium dialysis) and in an indirect one based on the assumption of competitive binding with DNP-lysine, it is likely that menadione and DNP bind at overlapping sites in the protein's combining region. This conclusion is supported by molecular models which reveal some common structural features in these ligands. Hence it is not surprising that antinitrophenyl antibody preparations, raised by conventional immunization procedures (anti-2,4-DNP; anti-2,6-DNP; anti-2,4,6-TNP) also bind menadione with considerable affinity. As with DNP ligands, when menadione binds to protein 315 or to conventional antinitrophenyl antibodies, some of the protein's tryptophan fluorescence is quenched, there is a change in the ligand's absorption spectrum (hypochromia and/or red shift), and the binding is temperature-dependent (exothermal)

    Optimal designs for experiments for scalar-on-function linear models

    Full text link
    The aim of this work is to extend the usual optimal experimental design paradigm to experiments where the settings of one or more factors are functions. For these new experiments, a design consists of combinations of functions for each run of the experiment along with settings for non-functional variables. After briefly introducing the class of functional variables, basis function systems are described. Basis function expansion is applied to a functional linear model consisting of both functional and scalar factors, reducing the problem to an optimisation problem of a single design matrix

    The Natural History of Leber Congenital Amaurosis and Cone-Rod Dystrophy Associated with Variants in the GUCY2D Gene

    Get PDF
    OBJECTIVE: To describe the spectrum of Leber congenital amaurosis (LCA) and cone-rod dystrophy (CORD) associated with the GUCY2D gene, and to identify potential clinical endpoints and optimal patient selection for future therapeutic trials. DESIGN: International multicenter retrospective cohort study. SUBJECTS: 82 patients with GUCY2D-associated CORD and LCA from 54 molecularly confirmed families. METHODS: Data were gathered by reviewing medical records for medical history, symptoms, best-corrected visual acuity (BCVA), ophthalmoscopy, visual fields, full-field electroretinography and retinal imaging (fundus photography, spectral-domain optical coherence tomography (SD-OCT), fundus autofluorescence). MAIN OUTCOMES MEASURES: Age of onset, annual decline of visual acuity, estimated visual impairment per age, genotype-phenotype correlations, anatomic characteristics on funduscopy, and multimodal imaging. RESULTS: Fourteen patients with autosomal recessive LCA and 68 with autosomal dominant CORD were included. The median follow-up time was 5.2 years (interquartile range (IQR), 2.6-8.8) for LCA, and 7.2 years (IQR, 2.2-14.2) for CORD. Generally, LCA presented in the first year of life. The BCVA in LCA ranged from no light perception to 1.00 logMAR, and remained relatively stable during follow-up. Imaging for LCA was limited, but showed little to no structural degeneration. In CORD, progressive vision loss started around the second decade of life. The annual decline rate of visual acuity was 0.022 logMAR (P A and the c.2512C>T GUCY2D variant (P = 0.798). At the age of 40 years the probability of being blind or severely visually impaired was 32%. The integrity of the ellipsoid zone (EZ) and external limiting membrane (ELM) on SD-OCT were correlated significantly with BCVA (Spearman's ρ = 0.744, P = 0.001 and ρ = 0.712, P < 0.001, respectively) in CORD. CONCLUSION: LCA due to variants in GUCY2D results in severe congenital visual impairment with relatively intact macular anatomy on funduscopy and available imaging, suggesting a long preservation of photoreceptors. Despite large variability, GUCY2D-associated CORD generally presented during adolescence with a progressive loss of vision and culminated in severe visual impairment during mid to late-adulthood. The integrity of the ELM and EZ may be suitable structural endpoints for therapeutic studies in GUCY2D-associated CORD

    Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease

    Get PDF
    Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM\textit{CHM} in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.This work was supported by The National Institute for Health Research England (NIHR) for the NIHR BioResource – Rare Diseases project (grant number RG65966). The Moorfields Eye Hospital cohort of patients and clinical and imaging data were ascertained and collected with the support of grants from the National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital, National Health Service Foundation Trust, and UCL Institute of Ophthalmology, Moorfields Eye Hospital Special Trustees, Moorfields Eye Charity, the Foundation Fighting Blindness (USA), and Retinitis Pigmentosa Fighting Blindness. M.M. is a recipient of an FFB Career Development Award. E.M. is supported by UCLH/UCL NIHR Biomedical Research Centre. F.L.R. and D.G. are supported by Cambridge NIHR Biomedical Research Centre

    Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data.

    Get PDF
    Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new insights into telomere biology on a previously unimaginable scale. To this end, a number of approaches for estimating telomere length from whole-genome sequencing data have been proposed. Here we present Telomerecat, a novel approach to the estimation of telomere length. Previous methods have been dependent on the number of telomeres present in a cell being known, which may be problematic when analysing aneuploid cancer data and non-human samples. Telomerecat is designed to be agnostic to the number of telomeres present, making it suited for the purpose of estimating telomere length in cancer studies. Telomerecat also accounts for interstitial telomeric reads and presents a novel approach to dealing with sequencing errors. We show that Telomerecat performs well at telomere length estimation when compared to leading experimental and computational methods. Furthermore, we show that it detects expected patterns in longitudinal data, repeated measurements, and cross-species comparisons. We also apply the method to a cancer cell data, uncovering an interesting relationship with the underlying telomerase genotype

    GWAS meta-analysis of intrahepatic cholestasis of pregnancy implicates multiple hepatic genes and regulatory elements

    Get PDF
    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder affecting 0.5–2% of pregnancies. The majority of cases present in the third trimester with pruritus, elevated serum bile acids and abnormal serum liver tests. ICP is associated with an increased risk of adverse outcomes, including spontaneous preterm birth and stillbirth. Whilst rare mutations affecting hepatobiliary transporters contribute to the aetiology of ICP, the role of common genetic variation in ICP has not been systematically characterised to date. Here, we perform genome-wide association studies (GWAS) and meta-analyses for ICP across three studies including 1138 cases and 153,642 controls. Eleven loci achieve genome-wide significance and have been further investigated and fine-mapped using functional genomics approaches. Our results pinpoint common sequence variation in liver-enriched genes and liver-specific cis-regulatory elements as contributing mechanisms to ICP susceptibility

    Publisher Correction: Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data.

    Get PDF
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)
    corecore