76 research outputs found

    Editorial: Opening the black box of kelps: Response of early life stages to anthropogenic stressors

    Get PDF
    Kelps form marine forests along world’s coastlines, providing valuable ecosystem goods and services, either directly as a source offood or medicinal products, or indirectly as biogenic habitats or carbon sink agents (Teagle et al., 2017; Wernberg et al., 2019). However, kelp forests are currently under threat due to anthropogenic climate change with latitudinal range shifts and large-scale declines at a global scale (Smale et al., 2019; Wernberg et al., 2019). Most studies on the impact of anthropogenic stressors on kelps have focused on the macroscopic sporophyte stage of the haploid-diploid life cycle (Schiel and Foster, 2006; Veenhof et al., 2022). However, the microscopic stages considered as the “black box” of kelps due to the complexity of studying them in situ, have been suggested to play a crucial role in the persistence of populations that experience sporophyte mortality after large-scale disturbances (McConnico and Foster, 2005; Barradas et al., 2011) as they can persist as “seed bank” analogues under adverse conditions (Hoffmann and Santelices, 1991; Veenhof et al., 2022). This Research Topic is a collection of 8 articles contributing to opening the “black box” of kelps by providing greater insight into how microscopic life stages of kelps are affected by anthropogenic climate change, helping to predict the persistence of these foundation species and therefore the fate of ecosystems and coastal communities. These studies highlight that the response of kelp early life stages to stressors can be strongly dependent on the population and thermal history.Australian Research Council DP190100058, DP200100201info:eu-repo/semantics/publishedVersio

    Microscopic life stages of North Atlantic Laminaria digitata (Phaeophyceae) exhibit trait-depedent thermal adaptation along latitudes

    Get PDF
    Kelp forests in the North Atlantic are at risk of decline at their warm temperature distribution margins due to anthropogenic temperature rise and more frequent marine heat waves. To investigate the thermal adaptation of the cold-temperate kelp Laminaria digitata, we sampled six populations, from the Arctic to Brittany (Spitsbergen, Tromsø, Bodø [all Norway], Helgoland [Germany], Roscoff and Quiberon [both France]), across the species’ entire distribution range, spanning 31.5° latitude and 12-13°C difference in mean summer sea surface temperature. We used pooled vegetative gametophytes derived from several sporophytes to approximate the genetic diversity of each location. Gametophytes were exposed to (sub-) lethal high (20-25°C) and (sub-) optimal low (0-15°C) temperature gradients in two full-factorial, common-garden experiments, subjecting subsets of populations from different origins to the same conditions. We assessed survival of gametophytes, their ability to develop microscopic sporophytes, and subsequent growth. We hypothesized that the thermal performance of gametophytes and microscopic sporophytes corresponds to their local long-term thermal history. Integrated gametophyte survival revealed a uniform upper survival temperature (UST) of 24°C among five tested populations (Tromsø to Quiberon). In contrast, following two weeks of thermal priming of gametophytes at 20-22°C, sporophyte formation at 15°C was significantly higher in southern populations (Quiberon and Roscoff) compared to the high-latitude population of Tromsø. Between 0-15°C, survival of the Arctic population (Spitsbergen) was negatively correlated with increasing temperatures, while the southernmost population (Quiberon) showed the opposite. Thus, responses of survival at low, and sporophyte formation at high temperatures, support the concept of local adaption. On the other hand, sporophyte formation between 0-15°C peaked at 6-9°C in the Quiberon and at 9-12°C in the Spitsbergen population. Sporophyte growth rates (GR) both in length and width were similar for Spitsbergen, Tromsø and Quiberon; all had maximum GRs at 12-15°C and low GRs at 0-6°C. Therefore, responses of sporophyte formation and growth at low temperatures do not reflect ecotypic adaptation. We conclude that L. digitata populations display trait-dependent adaptation, partly corresponding to their local temperature histories and partly manifesting uniform or unpredictable responses. This suggests differential selection pressures on the ontogenetic development of kelps such as L. digitata

    Seaweed reproductive biology: environmental and genetic controls

    Get PDF
    Knowledge of life cycle progression and reproduction of seaweeds transcends pure academic interest. Successful and sustainable seaweed exploitation and domestication will indeed require excellent control of the factors controlling growth and reproduction. The relative dominance of the ploidy-phases and their respective morphologies, however, display tremendous diversity. Consequently, the ecological and endogenous factors controlling life cycles are likely to be equally varied. A vast number of research papers addressing theoretical, ecological and physiological aspects of reproduction have been published over the years. Here, we review the current knowledge on reproductive strategies, trade-offs of reproductive effort in natural populations, and the environmental and endogenous factors controlling reproduction. Given that the majority of ecophysiological studies predate the "-omics" era, we examine the extent to which this knowledge of reproduction has been, or can be, applied to further our knowledge of life cycle control in seaweeds.European Commission [FA1406]; China Scholarship Council [201504910698]; Ghent University BOF Special Research Fund [01SC2316]; FCT fellowship [SFRH/BPD/107878/2015]info:eu-repo/semantics/publishedVersio

    In vitro ruminal fermentation and methane production of different seaweed species

    Get PDF
    Author's accepted version (post-print).Available from 29/03/2018.Seaweeds have potentials as alternative feed for ruminants, but there is a limited knowledge on their nutritive value. Seven seaweed species collected along the coast above the Arctic circle of Norway, both in spring and autumn, were assessed for nutrients and total polyphenols (TEP) content, gas production kinetics and in vitro rumen fermentation in batch cultures of ruminal microorganisms. The seaweeds were three red species (Mastocarpus stellatus, Palmaria palmata and Porphyra sp.), three brown species (Alaria esculenta, Laminaria digitata and Pelvetia canaliculata) and one green species (Acrosiphonia sp.). Additionally, the abundance and diversity of total bacteria, protozoa and archaea in the cultures with the three red seaweeds collected in spring were analyzed by quantitative PCR and PCR-DGGE, respectively. The crude protein (CP) content varied widely. Pelvetia had the greatest (P  0.05) among the other seaweeds in VFA production, but Porphyra sp. had the second highest methane production (P  0.05) by either seaweed species or the collection season. Higher final pH (P  0.05) in the abundance or the diversity of total bacteria, protozoa and archaea. In the PCR-DGGE analysis, samples were separated by the incubation run for all microbial populations analyzed, but not by seaweed species. The results indicate that seaweed species differ markedly in their in vitro rumen degradation, and that samples collected in autumn had lower rumen degradability than those collected in spring.acceptedVersio

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    Kelps and environmental changes in Kongsfjorden: Stress perception and responses

    Get PDF

    Long-Term Conditioning to Elevated pCO2 and Warming Influences the Fatty and Amino Acid Composition of the Diatom Cylindrotheca fusiformis

    Get PDF
    The unabated rise in anthropogenic CO2 emissions is predicted to strongly influence the ocean's environment, increasing the mean sea-surface temperature by 4°C and causing a pH decline of 0.3 units by the year 2100. These changes are likely to affect the nutritional value of marine food sources since temperature and CO2 can influence the fatty (FA) and amino acid (AA) composition of marine primary producers. Here, essential amino (EA) and polyunsaturated fatty (PUFA) acids are of particular importance due to their nutritional value to higher trophic levels. In order to determine the interactive effects of CO2 and temperature on the nutritional quality of a primary producer, we analyzed the relative PUFA and EA composition of the diatom Cylindrotheca fusiformis cultured under a factorial matrix of 2 temperatures (14 and 19°C) and 3 partial pressures of CO2 (180, 380, 750 μatm) for >250 generations. Our results show a decay of ∼3% and ∼6% in PUFA and EA content in algae kept at a pCO2 of 750 μatm (high) compared to the 380 μatm (intermediate) CO2 treatments at 14°C. Cultures kept at 19°C displayed a ∼3% lower PUFA content under high compared to intermediate pCO2, while EA did not show differences between treatments. Algae grown at a pCO2 of 180 μatm (low) had a lower PUFA and AA content in relation to those at intermediate and high CO2 levels at 14°C, but there were no differences in EA at 19°C for any CO2 treatment. This study is the first to report adverse effects of warming and acidification on the EA of a primary producer, and corroborates previous observations of negative effects of these stressors on PUFA. Considering that only ∼20% of essential biomolecules such as PUFA (and possibly EA) are incorporated into new biomass at the next trophic level, thepotential impacts of adverse effects of ocean warming and acidification at the base of the food web may be amplified towards higher trophic levels, which rely on them as source of essential biomolecules
    corecore