211 research outputs found

    Renewing the Exploration Approach for Mid-Enthalpy Systems: Examples from Northern England and Scotland

    Get PDF
    After a promising start in the 1970s and 80s, the UK rather fell behind other countries in the search for viable mid-enthalpy geothermal resources. This situation began to turn around in 2004, when the first of three deep geothermal exploration boreholes were drilled in northern England. What distinguished these from earlier drilling in Cornwall was the deliberate search for naturallyhigh permeability associated with major faults, especially those that have undergone strike-slip reactivation during the Cenozoic. Boreholes at Eastgate in the North Pennines targeted buried radiothermal granite, whereas the 1,821m-deep Science Central Borehole in Newcastle upon Tyne targeted a postulated deep sedimentary aquifer (the Fell Sandstones), which were inferred to be connected laterally to the granitic heat source by a major fault (the reactivation of the Iapetus geo-suture). The drilling was in both cases rewarded with impressive heat flows, and in the case of Eastgate with what is believed to be the highest permeability yet found in a deep granite batholith anywhere in the world. In parallel with these developments, a re-assessment was made of the preexisting geothermal heat flow database for the UK, applying newly-standardised correction protocols for palaeoclimatic and topographic distortions, which were found to be particularly marked in Scotland (where only shallow boreholes had been used to establish geothermal gradients in the original 1980s analysis), Similar prospects in northern England (similar to that drilled at Science Central) are now the focus of commercial exploration efforts. Appraisal of fault dispositions relative to the present-day maximum compressive stress azimuth are being used to identify the most promising areas for intersecting fault-related permeability at depth. New geophysical tools – most notably atomic dielectric resonance scanning – are also being appraised for their ability to directly detect features (such as hot brines) which are indicative of localised convection in target fault zones and aquifers

    Increasing Awareness and Use of Iodised Salt in a Marginalised Community Setting in North-West Pakistan

    Get PDF
    Iodine deficiency is still prevalent in parts of Pakistan, despite the introduction of a national Iodine Deficiency Disorder Control Programme in 1994. The purpose of this study was to gain an understanding of the knowledge, attitudes and practice regarding the use of iodised salt in a brick kiln community, and to use this information to design an intervention to increase its consumption. A cross-sectional survey was used to assess the use of iodised salt and focus group discussions explored the attitudes and barriers to its use. Thematically analysed transcripts informed the design of a 4-month intervention. Iodised salt sales and urine iodine concentration (UIC) were monitored to assess the effectiveness of the intervention. At baseline, 2.6% of households reported use of iodised salt and barriers included its higher cost and belief about a negative impact on reproduction. During the intervention, sales of salt labelled as iodised increased by 45%, however this was not reflected in an increase in UIC. This study highlighted the positive impact of education and awareness raising on iodised salt consumption in a hard to reach, marginalised community. However, issues regarding adequate iodisation by local producers and appropriate storage also need to be urgently addressed at a provincial level

    Assignment of the Human and Mouse Prion Protein Genes to Homologous Chromosomes

    Get PDF
    Purified preparations of scrapie prions contain one major macromolecule, designated prion protein (PrP). Genes encoding PrP are found in normal animals and humans but not within the infectious particles. The PrP gene was assigned to human chromosome 20 and the corresponding mouse chromosome 2 using somatic cell hybrids. In situ hybridization studies mapped the human PrP gene to band 20p12→pter. Our results should lead to studies of genetic loci syntenic with the PrP gene, which may play a role in the pathogenesis of prion diseases or other degenerative neurologic disorders

    Climate, people and faunal succession on Java, Indonesia: evidence from Song Gupuh

    Get PDF
    Song Gupuh, a partially collapsed cave in the Gunung Sewu Limestones of East Java, Indonesia, contains over 16 m of deposits with a faunal sequence spanning some 70 ka. Major changes in the range of animals represented show the impact of climate change and humans. The Terminal Pleistocene and Early Holocene was a period of maximum biodiversity. Human use of Song Gupuh and other cave sites in the region also intensified significantly from ca. 12 ka, together with a new focus on exploitation of small-bodied species (macaque monkeys and molluscs), the first evidence for import of resources from the coast, and use of bone and shell tools. Human activity, especially after the onset of the Neolithic around 2.6 ka, subsequently contributed to a progressive loss of many species from the area, including tapir, elephant, Malayan bear, rhino and tiger, and this extinction process is continuing. We conclude by discussing the biogeographical significance of Song Gupuh in the context of other sites in Java (e.g. Punung, Wajak) and further afield (e.g. Liang Bua)

    Paleogenomics. Genomic structure in Europeans dating back at least 36,200 years.

    Get PDF
    The origin of contemporary Europeans remains contentious. We obtained a genome sequence from Kostenki 14 in European Russia dating from 38,700 to 36,200 years ago, one of the oldest fossils of anatomically modern humans from Europe. We find that Kostenki 14 shares a close ancestry with the 24,000-year-old Mal'ta boy from central Siberia, European Mesolithic hunter-gatherers, some contemporary western Siberians, and many Europeans, but not eastern Asians. Additionally, the Kostenki 14 genome shows evidence of shared ancestry with a population basal to all Eurasians that also relates to later European Neolithic farmers. We find that Kostenki 14 contains more Neandertal DNA that is contained in longer tracts than present Europeans. Our findings reveal the timing of divergence of western Eurasians and East Asians to be more than 36,200 years ago and that European genomic structure today dates back to the Upper Paleolithic and derives from a metapopulation that at times stretched from Europe to central Asia.GeoGenetics members were supported by the Lundbeck Foundation and the Danish National Research Foundation (DNRF94). ASM was supported by the Swiss National Science Foundation (PBSKP3_143529). Research on the archaeological background by PRN was supported by a MC Career Integration Grant (322261).This is the accepted manuscript. The final version is available from Science at http://www.sciencemag.org/content/346/6213/1113.short

    The relationships between West Nile and Kunjin viruses.

    Get PDF
    Until recently, West Nile (WN) and Kunjin (KUN) viruses were classified as distinct types in the Flavivirus genus. However, genetic and antigenic studies on isolates of these two viruses indicate that the relationship between them is more complex. To better define this relationship, we performed sequence analyses on 32 isolates of KUN virus and 28 isolates of WN virus from different geographic areas, including a WN isolate from the recent outbreak in New York. Sequence comparisons showed that the KUN virus isolates from Australia were tightly grouped but that the WN virus isolates exhibited substantial divergence and could be differentiated into four distinct groups. KUN virus isolates from Australia were antigenically homologous and distinct from the WN isolates and a Malaysian KUN virus. Our results suggest that KUN and WN viruses comprise a group of closely related viruses that can be differentiated into subgroups on the basis of genetic and antigenic analyses

    SARS-Coronavirus Replication Is Supported by a Reticulovesicular Network of Modified Endoplasmic Reticulum

    Get PDF
    Positive-strand RNA viruses, a large group including human pathogens such as SARS-coronavirus (SARS-CoV), replicate in the cytoplasm of infected host cells. Their replication complexes are commonly associated with modified host cell membranes. Membrane structures supporting viral RNA synthesis range from distinct spherular membrane invaginations to more elaborate webs of packed membranes and vesicles. Generally, their ultrastructure, morphogenesis, and exact role in viral replication remain to be defined. Poorly characterized double-membrane vesicles (DMVs) were previously implicated in SARS-CoV RNA synthesis. We have now applied electron tomography of cryofixed infected cells for the three-dimensional imaging of coronavirus-induced membrane alterations at high resolution. Our analysis defines a unique reticulovesicular network of modified endoplasmic reticulum that integrates convoluted membranes, numerous interconnected DMVs (diameter 200–300 nm), and “vesicle packets” apparently arising from DMV merger. The convoluted membranes were most abundantly immunolabeled for viral replicase subunits. However, double-stranded RNA, presumably revealing the site of viral RNA synthesis, mainly localized to the DMV interior. Since we could not discern a connection between DMV interior and cytosol, our analysis raises several questions about the mechanism of DMV formation and the actual site of SARS-CoV RNA synthesis. Our data document the extensive virus-induced reorganization of host cell membranes into a network that is used to organize viral replication and possibly hide replicating RNA from antiviral defense mechanisms. Together with biochemical studies of the viral enzyme complex, our ultrastructural description of this “replication network” will aid to further dissect the early stages of the coronavirus life cycle and its virus-host interactions

    A reassessment of the early archaeological record at Leang Burung 2, a Late Pleistocene rock-shelter site on the Indonesian island of Sulawesi

    Get PDF
    This paper presents a reassessment of the archaeological record at Leang Burung 2, a key early human occupation site in the Late Pleistocene of Southeast Asia. Excavated originally by Ian Glover in 1975, this limestone rock-shelter in the Maros karsts of Sulawesi, Indonesia, has long held significance in our understanding of early human dispersals into \u27Wallacea\u27, the vast zone of oceanic islands between continental Asia and Australia. We present new stratigraphic information and dating evidence from Leang Burung 2 collected during the course of our excavations at this site in 2007 and 2011-13. Our findings suggest that the classic Late Pleistocene modern human occupation sequence identified previously at Leang Burung 2, and proposed to span around 31,000 to 19,000 conventional 14C years BP (~35-24 ka cal BP), may actually represent an amalgam of reworked archaeological materials. Sources for cultural materials of mixed ages comprise breccias from the rear wall of the rock-shelter-remnants of older, eroded deposits dated to 35-23 ka cal BP-and cultural remains of early Holocene antiquity. Below the upper levels affected by the mass loss of Late Pleistocene deposits, our deep-trench excavations uncovered evidence for an earlier hominin presence at the site. These findings include fossils of now-extinct proboscideans and other \u27megafauna\u27 in stratified context, as well as a cobble-based stone artifact technology comparable to that produced by late Middle Pleistocene hominins elsewhere on Sulawesi
    corecore