275 research outputs found
Protein kinase C modulates the activity of a cloned gamma-aminobutyric acid transporter expressed in Xenopus oocytes via regulated subcellular redistribution of the transporter
We report that activators and inhibitors of protein kinase C (PKC) and protein phosphatases regulate the activity of a cloned rat brain gamma- aminobutyric acid (GABA) transporter (GAT1) expressed in Xenopus oocytes. Four compounds known to activate PKC increased GABA uptake 2- 3.5-fold over basal control levels. Inhibition of PKC by bisindolylmaleimide reduced basal GABA uptake 80% and blocked the phorbol 12-myristate 13-acetate (PMA)-induced stimulation of transport. Okadaic acid, a protein phosphatase inhibitor, stimulated transport 2.5- fold; a 4-fold increase in GABA uptake occurred when oocytes were treated with cyclosporin A, a specific inhibitor of protein phosphatase 2B. Modulation resulted in changes to Vmax but not to Km and was influenced by the functional expression level of the transporter protein; as expression level increased, the ability to up-regulate transporter activity decreased. Down-regulation of transporter activity was independent of expression level. Modulation did not occur through phosphorylation of the three consensus PKC sites predicted by the primary protein sequence since their removal had no effect on the susceptibility of the transporter to modulation by PMA or bisindolylmaleimide. Subcellular fractionation of oocyte membranes demonstrated that under basal level conditions, the majority of GAT1 was targeted to a cytoplasmic compartment corresponding to the trans- Golgi or low density vesicles. Stimulation of PKC with PMA resulted in a translocation of transporters from this compartment to the plasma membrane. At higher expression levels of GAT1 protein, a larger portion of GAT1 was found on the plasma membrane during basal level conditions and treatment with bisindolylmaleimide resulted in removal of these transporters from the plasma membrane. At expression levels demonstrated to be resistant to modulation by PMA, PMA-treatment still resulted in translocation of transporters from the cytoplasm to the plasma membrane. Thus, the inability of PMA to increase uptake at high expression of the GAT1 protein is due to saturation at a step subsequent to translocation. These findings 1) demonstrate the presence of a novel regulated secretory pathway in oocytes and 2) suggest a modulatory mechanism for neurotransmitter transporters that could have significant effects upon synaptic function
Differential coupling of G protein alpha subunits to seven-helix receptors expressed in Xenopus oocytes
Xenopus oocytes were used to examine the coupling of the serotonin 1c (5HT1c) and thyrotropin-releasing hormone (TRH) receptors to both endogenous and heterologously expressed G protein alpha subunits. Expression of either G protein-coupled receptor resulted in agonist- induced, Ca(2+)-activated Cl- currents that were measured using a two- electrode voltage clamp. 5HT-induced Cl- currents were reduced 80% by incubating the injected oocytes with pertussis toxin (PTX) and inhibited 50-65% by injection of antisense oligonucleotides to the PTX- sensitive Go alpha subunit. TRH-induced Cl- currents were reduced only 20% by PTX treatment but were inhibited 60% by injection of antisense oligonucleotides to the PTX-insensitive Gq alpha subunit. Injection of antisense oligonucleotides to a novel Xenopus phospholipase C-beta inhibited the 5HT1c (and Go)-induced Cl- current with little effect on the TRH (and Gq)-induced current. These results suggest that receptor- activated Go and Gq interact with different effectors, most likely different isoforms of phospholipase C-beta. Co-expression of each receptor with seven different mammalian G protein alpha subunit cRNAs (Goa, Gob, Gq, G11, Gs, Golf, and Gt) was also examined. Co-expression of either receptor with the first four of these G alpha subunits resulted in a maximum 4-6-fold increase in Cl- currents; the increase depended on the amount of G alpha subunit cRNA injected. This increase was blocked by PTX for G alpha oa and G alpha ob co-expression but not for G alpha q or G alpha 11 co-expression. Co-expression of either receptor with Gs, Golf, or Gt had no effect on Ca(2+)-activated Cl- currents; furthermore, co-expression with Gs or Golf also failed to reveal 5HT- or TRH-induced changes in adenylyl cyclase as assessed by activation of the cystic fibrosis transmembrane conductance regulator Cl- channel. These results indicate that in oocytes, the 5HT1c and TRH receptors do the following: 1) preferentially couple to PTX-sensitive (Go) and PTX-insensitive (Gq) G proteins and that these G proteins act on different effectors, 2) couple within the same cell type to several different heterologously expressed G protein alpha subunits to activate the oocyte's endogenous Cl- current, and 3) fail to couple to G protein alpha subunits that activate cAMP or phosphodiesterase
Second Messengers, Trafficking-Related Proteins, and Amino Acid Residues that Contribute to the Functional Regulation of the Rat Brain GABA Transporter GAT1
Recent evidence indicates that several members of the Na⁺-coupled transporter family are regulated, and this regulation in part occurs by redistribution of transporters between intracellular locations and the plasma membrane. We elucidate components of this process for both wild-type and mutant GABA transporters (GAT1) expressed in Xenopus oocytes using a combination of uptake assays, immunoblots, and electrophysiological measurements of membrane capacitance, transport-associated currents, and GAT1-specific charge movements. At low GAT1 expression levels, activators of protein kinase C (PKC) induce redistribution of GAT1 from intracellular vesicles to the plasma membrane; at higher GAT1 expression levels, activators of PKC fail to induce this redistribution. However, coinjection of total rat brain mRNA with GAT1 permits PKC-mediated modulation at high transporter expression levels. This effect of brain mRNA on modulation is mimicked by coinjection of syntaxin 1a mRNA and is eliminated by injecting synaptophysin or syntaxin antisense oligonucleotides. Additionally, botulinum toxins, which inactivate proteins involved in vesicle release and recycling, reduce basal GAT1 expression and prevent PKC-induced translocation. Mutant GAT1 proteins, in which most or all of a leucine heptad repeat sequence was removed, display altered basal distribution and lack susceptibility to modulation by PKC, delineating one region of GAT1 necessary for its targeting. Thus, functional regulation of GAT1 in oocytes occurs via components common to transporters and to trafficking in both neural and non-neural cells, and suggests a relationship between factors that control neurotransmitter secretion and the components necessary for neurotransmitter uptake
Random Mutagenesis of G protein ɑ Subunit G_oɑ. Mutations altering nucleotide binding
Nucleotide binding properties of the G protein ɑ subunit G_oɑ were probed by mutational analysis in recombinant Escherichia coli. Thousands of random mutations generated by polymerase chain reaction were screened by in situ [^(35)S]GTPyS (guanosine 5'-(3-O-thio)-triphosphate) binding on the colony lifts following transformation of bacteria with modified G_oɑ cDNA. Clones that did not bind the nucleotide under these conditions were characterized by DNA sequence analysis, and the nucleotide binding properties were further studied in crude bacterial extracts. A number of novel mutations reducing the affinity of G_oɑ for GTPyS or Mg^(2+) were identified. Some of the mutations substitute amino acid residues homologous to those known to interact with guanine nucleotides in p21^(ras) proteins. Other mutations show that previously unstudied residues also participate in the nucleotide binding. Several mutants lost GTPyS binding but retained the capacity to interact with the βy subunit complex as determined by pertussis toxin-mediated ADP-ribosylation. One of these, mutant S47C, was functionally expressed in Xenopus laevis oocytes along with the G protein-coupled thyrotropin-releasing hormone (TRH) receptor. Whereas wild-type G_oɑ increased TRH-promoted chloride currents, S47C significantly decreased the hormone-induced Cl^- response, suggesting that this mutation resulted in a dominant negative phenotype
Real-time selective sequencing using nanopore technology
The Oxford Nanopore Technologies MinION sequencer enables the selection of specific DNA molecules for sequencing by reversing the driving voltage across individual nanopores. To directly select molecules for sequencing, we used dynamic time warping to match reads to reference sequences. We demonstrate our open-source Read Until software in real-time selective sequencing of regions within small genomes, individual amplicon enrichment and normalization of an amplicon set
Number, Density, and Surface/Cytoplasmic Distribution of GABA Transporters at Presynaptic Structures of Knock-In Mice Carrying GABA Transporter Subtype 1–Green Fluorescent Protein Fusions
GABA transporter subtype 1 (GAT1) molecules were counted near GABAergic synapses, to a resolution of ∼0.5 μm. Fusions between GAT1 and green fluorescent protein (GFP) were tested in heterologous expression systems, and a construct was selected that shows function, expression level, and trafficking similar to that of wild-type (WT) GAT1. A strain of knock-in mice was constructed that expresses this mGAT1–GFP fusion in place of the WT GAT1 gene. The pattern of fluorescence in brain slices agreed with previous immunocytochemical observations. [^3H]GABA uptake, synaptic electrophysiology, and subcellular localization of the mGAT1–GFP construct were also compared with WT mice. Quantitative fluorescence microscopy was used to measure the density of mGAT1–GFP at presynaptic structures in CNS preparations from the knock-in mice. Fluorescence measurements were calibrated with transparent beads and gels that have known GFP densities. Surface biotinylation defined the fraction of transporters on the surface versus those in the nearby cytoplasm. The data show that the presynaptic boutons of GABAergic interneurons in cerebellum and hippocampus have a membrane density of 800–1300 GAT1 molecules per square micrometer, and the axons that connect boutons have a linear density of 640 GAT1 molecules per micrometer. A cerebellar basket cell bouton, a pinceau surrounding a Purkinje cell axon, and a cortical chandelier cell cartridge carry 9000, 7.8 million, and 430,000 GAT1 molecules, respectively; 61–63% of these molecules are on the surface membrane. In cultures from hippocampus, the set of fluorescent cells equals the set of GABAergic interneurons. Knock-in mice carrying GFP fusions of membrane proteins provide quantitative data required for understanding the details of synaptic transmission in living neurons
Number, Density, and Surface/Cytoplasmic Distribution of GABA Transporters at Presynaptic Structures of Knock-In Mice Carrying GABA Transporter Subtype 1–Green Fluorescent Protein Fusions
GABA transporter subtype 1 (GAT1) molecules were counted near GABAergic synapses, to a resolution of ∼0.5 μm. Fusions between GAT1 and green fluorescent protein (GFP) were tested in heterologous expression systems, and a construct was selected that shows function, expression level, and trafficking similar to that of wild-type (WT) GAT1. A strain of knock-in mice was constructed that expresses this mGAT1–GFP fusion in place of the WT GAT1 gene. The pattern of fluorescence in brain slices agreed with previous immunocytochemical observations. [^3H]GABA uptake, synaptic electrophysiology, and subcellular localization of the mGAT1–GFP construct were also compared with WT mice. Quantitative fluorescence microscopy was used to measure the density of mGAT1–GFP at presynaptic structures in CNS preparations from the knock-in mice. Fluorescence measurements were calibrated with transparent beads and gels that have known GFP densities. Surface biotinylation defined the fraction of transporters on the surface versus those in the nearby cytoplasm. The data show that the presynaptic boutons of GABAergic interneurons in cerebellum and hippocampus have a membrane density of 800–1300 GAT1 molecules per square micrometer, and the axons that connect boutons have a linear density of 640 GAT1 molecules per micrometer. A cerebellar basket cell bouton, a pinceau surrounding a Purkinje cell axon, and a cortical chandelier cell cartridge carry 9000, 7.8 million, and 430,000 GAT1 molecules, respectively; 61–63% of these molecules are on the surface membrane. In cultures from hippocampus, the set of fluorescent cells equals the set of GABAergic interneurons. Knock-in mice carrying GFP fusions of membrane proteins provide quantitative data required for understanding the details of synaptic transmission in living neurons
Neurophysiology
Contains research objectives and summary of research on sixteen research projects.National Institutes of Health (Grant 5 TO1 EY00090-03)National Institutes of Health (Grant 3 RO1 EY01149-03S1)Bell Laboratories (Grant)National Institutes of Health (Grant 5 RO1 NS12307-02)National Institutes of Health (Grant K04 NS00010
GABA transporter function, oligomerization state, and anchoring: correlates with subcellularly resolved FRET
The mouse γ-aminobutyric acid (GABA) transporter mGAT1 was expressed in neuroblastoma 2a cells. 19 mGAT1 designs incorporating fluorescent proteins were functionally characterized by [^3H]GABA uptake in assays that responded to several experimental variables, including the mutations and pharmacological manipulation of the cytoskeleton. Oligomerization and subsequent trafficking of mGAT1 were studied in several subcellular regions of live cells using localized fluorescence, acceptor photobleach Förster resonance energy transfer (FRET), and pixel-by-pixel analysis of normalized FRET (NFRET) images. Nine constructs were functionally indistinguishable from wild-type mGAT1 and provided information about normal mGAT1 assembly and trafficking. The remainder had compromised [^3H]GABA uptake due to observable oligomerization and/or trafficking deficits; the data help to determine regions of mGAT1 sequence involved in these processes. Acceptor photobleach FRET detected mGAT1 oligomerization, but richer information was obtained from analyzing the distribution of all-pixel NFRET amplitudes. We also analyzed such distributions restricted to cellular subregions. Distributions were fit to either two or three Gaussian components. Two of the components, present for all mGAT1 constructs that oligomerized, may represent dimers and high-order oligomers (probably tetramers), respectively. Only wild-type functioning constructs displayed three components; the additional component apparently had the highest mean NFRET amplitude. Near the cell periphery, wild-type functioning constructs displayed the highest NFRET. In this subregion, the highest NFRET component represented ~30% of all pixels, similar to the percentage of mGAT1 from the acutely recycling pool resident in the plasma membrane in the basal state. Blocking the mGAT1 C terminus postsynaptic density 95/discs large/zona occludens 1 (PDZ)-interacting domain abolished the highest amplitude component from the NFRET distributions. Disrupting the actin cytoskeleton in cells expressing wild-type functioning transporters moved the highest amplitude component from the cell periphery to perinuclear regions. Thus, pixel-by-pixel NFRET analysis resolved three distinct forms of GAT1: dimers, high-order oligomers, and transporters associated via PDZ-mediated interactions with the actin cytoskeleton and/or with the exocyst
Neurophysiology
Contains research objectives and summary of research on seventeen research projects and reports on four research projects.National Institutes of Health (Grant 5 TOl EY00090-02)Bell Telephone Laboratories, Inc. (Grant)National Institutes of Health (Grant 5 ROI EY01149-03)National Institutes of Health (Grant NS 12307-01)National Institutes of Health (Grant 1 K04 NS00010
- …
